These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 24335557)

  • 1. Vision-based flight control in the hawkmoth Hyles lineata.
    Windsor SP; Bomphrey RJ; Taylor GK
    J R Soc Interface; 2014 Feb; 11(91):20130921. PubMed ID: 24335557
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Head movements quadruple the range of speeds encoded by the insect motion vision system in hawkmoths.
    Windsor SP; Taylor GK
    Proc Biol Sci; 2017 Oct; 284(1864):. PubMed ID: 28978733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integration of visual and antennal mechanosensory feedback during head stabilization in hawkmoths.
    Chatterjee P; Prusty AD; Mohan U; Sane SP
    Elife; 2022 Jun; 11():. PubMed ID: 35758646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drosophila flying in augmented reality reveals the vision-based control autonomy of the optomotor response.
    Cellini B; Ferrero M; Mongeau JM
    Curr Biol; 2024 Jan; 34(1):68-78.e4. PubMed ID: 38113890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optomotor steering and flight control requires a specific sub-section of the compound eye in the hawkmoth,
    Copley S; Parthasarathy K; Willis MA
    J Exp Biol; 2018 Oct; 221(Pt 21):. PubMed ID: 29967220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The roles of vision and antennal mechanoreception in hawkmoth flight control.
    Dahake A; Stöckl AL; Foster JJ; Sane SP; Kelber A
    Elife; 2018 Dec; 7():. PubMed ID: 30526849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hawkmoths regulate flight torques with their abdomen for yaw control.
    Le V; Cellini B; Schilder R; Mongeau JM
    J Exp Biol; 2023 May; 226(9):. PubMed ID: 36995279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Floquet stability analysis of the longitudinal dynamics of two hovering model insects.
    Wu JH; Sun M
    J R Soc Interface; 2012 Sep; 9(74):2033-46. PubMed ID: 22491980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of lateral optic flow cues in hawkmoth flight control.
    Stöckl A; Grittner R; Pfeiffer K
    J Exp Biol; 2019 Jul; 222(Pt 13):. PubMed ID: 31196978
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multibody approach for 6-DOF flight dynamics and stability analysis of the hawkmoth Manduca sexta.
    Kim JK; Han JH
    Bioinspir Biomim; 2014 Mar; 9(1):016011. PubMed ID: 24451177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hawkmoth flight stability in turbulent vortex streets.
    Ortega-Jimenez VM; Greeter JS; Mittal R; Hedrick TL
    J Exp Biol; 2013 Dec; 216(Pt 24):4567-79. PubMed ID: 24072794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hovering of model insects: simulation by coupling equations of motion with Navier-Stokes equations.
    Wu JH; Zhang YL; Sun M
    J Exp Biol; 2009 Oct; 212(Pt 20):3313-29. PubMed ID: 19801436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wing motion transformation to evaluate aerodynamic coupling in flapping wing flight.
    Faruque IA; Humbert JS
    J Theor Biol; 2014 Dec; 363():198-204. PubMed ID: 25128237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The generation of forces and moments during visual-evoked steering maneuvers in flying Drosophila.
    Sugiura H; Dickinson MH
    PLoS One; 2009; 4(3):e4883. PubMed ID: 19300507
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of stretch receptor ablation on the optomotor control of lift in the hawkmoth Manduca sexta.
    Frye MA
    J Exp Biol; 2001 Nov; 204(Pt 21):3683-91. PubMed ID: 11719532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and stable flight of a 21 g insect-like tailless flapping wing micro air vehicle with angular rates feedback control.
    Phan HV; Kang T; Park HC
    Bioinspir Biomim; 2017 Apr; 12(3):036006. PubMed ID: 28281468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial tuning of translational optic flow responses in hawkmoths of varying body size.
    Grittner R; Baird E; Stöckl A
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2022 Mar; 208(2):279-296. PubMed ID: 34893928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active control of free flight manoeuvres in a hawkmoth, Agrius convolvuli.
    Wang H; Ando N; Kanzaki R
    J Exp Biol; 2008 Feb; 211(Pt 3):423-32. PubMed ID: 18203998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visual feedback influences antennal positioning in flying hawk moths.
    Krishnan A; Sane SP
    J Exp Biol; 2014 Mar; 217(Pt 6):908-17. PubMed ID: 24265427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of moth flight posture is mediated by wing mechanosensory feedback.
    Dickerson BH; Aldworth ZN; Daniel TL
    J Exp Biol; 2014 Jul; 217(Pt 13):2301-8. PubMed ID: 24737754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.