These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 24336000)

  • 1. Quantum coherence induces pulse shape modification in a semiconductor optical amplifier at room temperature.
    Kolarczik M; Owschimikow N; Korn J; Lingnau B; Kaptan Y; Bimberg D; Schöll E; Lüdge K; Woggon U
    Nat Commun; 2013; 4():2953. PubMed ID: 24336000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coherent control in a semiconductor optical amplifier operating at room temperature.
    Capua A; Karni O; Eisenstein G; Sichkovskyi V; Ivanov V; Reithmaier JP
    Nat Commun; 2014 Sep; 5():5025. PubMed ID: 25242121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electronic Coherence and Coherent Dephasing in the Optical Control of Electrons in Graphene.
    Heide C; Eckstein T; Boolakee T; Gerner C; Weber HB; Franco I; Hommelhoff P
    Nano Lett; 2021 Nov; 21(22):9403-9409. PubMed ID: 34735774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Room-temperature coherent optical manipulation of hole spins in solution-grown perovskite quantum dots.
    Lin X; Han Y; Zhu J; Wu K
    Nat Nanotechnol; 2023 Feb; 18(2):124-130. PubMed ID: 36536044
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast Coherent Control of Condensed Matter with Attosecond Precision.
    Katsuki H; Takei N; Sommer C; Ohmori K
    Acc Chem Res; 2018 May; 51(5):1174-1184. PubMed ID: 29733191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Room-temperature slow light with semiconductor quantum-dot devices.
    Su H; Chuang SL
    Opt Lett; 2006 Jan; 31(2):271-3. PubMed ID: 16441053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coherent manipulation of coupled electron spins in semiconductor quantum dots.
    Petta JR; Johnson AC; Taylor JM; Laird EA; Yacoby A; Lukin MD; Marcus CM; Hanson MP; Gossard AC
    Science; 2005 Sep; 309(5744):2180-4. PubMed ID: 16141370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of Phonons on Dephasing of Individual Excitons in Deterministic Quantum Dot Microlenses.
    Jakubczyk T; Delmonte V; Fischbach S; Wigger D; Reiter DE; Mermillod Q; Schnauber P; Kaganskiy A; Schulze JH; Strittmatter A; Rodt S; Langbein W; Kuhn T; Reitzenstein S; Kasprzak J
    ACS Photonics; 2016 Dec; 3(12):2461-2466. PubMed ID: 28713845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum control study of ultrafast optical responses in semiconductor quantum dot devices.
    Huang JY; Lin CY; Liu WS; Chyi JI
    Opt Express; 2014 Dec; 22(25):30815-25. PubMed ID: 25607030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Slow-to-fast light using absorption to gain switching in quantum-well semiconductor optical amplifier.
    Kondratko PK; Chuang SL
    Opt Express; 2007 Aug; 15(16):9963-9. PubMed ID: 19547346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrically tunable slow and fast lights in a quantum-dot semiconductor optical amplifier near 1.55 microm.
    Matsudaira A; Lee D; Kondratko P; Nielsen D; Chuang SL; Kim NJ; Oh JM; Pyun SH; Jeong WG; Jang JW
    Opt Lett; 2007 Oct; 32(19):2894-6. PubMed ID: 17909609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rabi oscillations and self-induced transparency in InAs/InP quantum dot semiconductor optical amplifier operating at room temperature.
    Karni O; Capua A; Eisenstein G; Sichkovskyi V; Ivanov V; Reithmaier JP
    Opt Express; 2013 Nov; 21(22):26786-96. PubMed ID: 24216900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coherent control in quantum dot gain media using shaped pulses: a numerical study.
    Mishra AK; Karni O; Eisenstein G
    Opt Express; 2015 Nov; 23(23):29940-53. PubMed ID: 26698476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclei-induced frequency focusing of electron spin coherence.
    Greilich A; Shabaev A; Yakovlev DR; Efros AL; Yugova IA; Reuter D; Wieck AD; Bayer M
    Science; 2007 Sep; 317(5846):1896-9. PubMed ID: 17901328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled storage and transfer of photonic space-time quantum-coherence in active quantum dot nanomaterials.
    Gehrig E; Hess O
    Opt Express; 2008 Mar; 16(6):3744-52. PubMed ID: 18542469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mixed frequency-/time-domain coherent multidimensional spectroscopy: research tool or potential analytical method?
    Pakoulev AV; Rickard MA; Kornau KM; Mathew NA; Yurs LA; Block SB; Wright JC
    Acc Chem Res; 2009 Sep; 42(9):1310-21. PubMed ID: 19445479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Undamped ultrafast pulsation of plasmonic fields via coherent exciton-plasmon coupling.
    Sadeghi SM; Wing WJ; Gutha RR
    Nanotechnology; 2015 Feb; 26(8):085202. PubMed ID: 25648526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light Polarization-Controlled Conversion of Ultrafast Coherent-Incoherent Exciton Dynamics in Few-Layer ReS
    Sim S; Lee D; Lee J; Bae H; Noh M; Cha S; Jo MH; Lee K; Choi H
    Nano Lett; 2019 Oct; 19(10):7464-7469. PubMed ID: 31448923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pump-probe quantum state tomography in a semiconductor optical amplifier.
    Grosse NB; Owschimikow N; Aust R; Lingnau B; Koltchanov A; Kolarczik M; Lüdge K; Woggon U
    Opt Express; 2014 Dec; 22(26):32520-5. PubMed ID: 25607214
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coherent optical control of the ultrafast dephasing of phonon-plasmon coupling in a polar semiconductor using a pulse train of below-band-gap excitation.
    Lee JD; Hase M
    Phys Rev Lett; 2008 Dec; 101(23):235501. PubMed ID: 19113565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.