These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 24336165)

  • 1. Microfluidic picoliter bioreactor for microbial single-cell analysis: fabrication, system setup, and operation.
    Gruenberger A; Probst C; Heyer A; Wiechert W; Frunzke J; Kohlheyer D
    J Vis Exp; 2013 Dec; (82):50560. PubMed ID: 24336165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatiotemporal microbial single-cell analysis using a high-throughput microfluidics cultivation platform.
    Grünberger A; Probst C; Helfrich S; Nanda A; Stute B; Wiechert W; von Lieres E; Nöh K; Frunzke J; Kohlheyer D
    Cytometry A; 2015 Dec; 87(12):1101-15. PubMed ID: 26348020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Picoliter nDEP traps enable time-resolved contactless single bacterial cell analysis in controlled microenvironments.
    Fritzsch FS; Rosenthal K; Kampert A; Howitz S; Dusny C; Blank LM; Schmid A
    Lab Chip; 2013 Feb; 13(3):397-408. PubMed ID: 23223864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beyond growth rate 0.6: Corynebacterium glutamicum cultivated in highly diluted environments.
    Grünberger A; van Ooyen J; Paczia N; Rohe P; Schiendzielorz G; Eggeling L; Wiechert W; Kohlheyer D; Noack S
    Biotechnol Bioeng; 2013 Jan; 110(1):220-8. PubMed ID: 22890752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A disposable picolitre bioreactor for cultivation and investigation of industrially relevant bacteria on the single cell level.
    Grünberger A; Paczia N; Probst C; Schendzielorz G; Eggeling L; Noack S; Wiechert W; Kohlheyer D
    Lab Chip; 2012 May; 12(11):2060-8. PubMed ID: 22511122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analyzing Microbial Population Heterogeneity-Expanding the Toolbox of Microfluidic Single-Cell Cultivations.
    Leygeber M; Lindemann D; Sachs CC; Kaganovitch E; Wiechert W; Nöh K; Kohlheyer D
    J Mol Biol; 2019 Nov; 431(23):4569-4588. PubMed ID: 31034885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbial single-cell analysis in picoliter-sized batch cultivation chambers.
    Kaganovitch E; Steurer X; Dogan D; Probst C; Wiechert W; Kohlheyer D
    N Biotechnol; 2018 Dec; 47():50-59. PubMed ID: 29550523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent developments in microfluidics for cell studies.
    Xiong B; Ren K; Shu Y; Chen Y; Shen B; Wu H
    Adv Mater; 2014 Aug; 26(31):5525-32. PubMed ID: 24536032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic platforms for generating dynamic environmental perturbations to study the responses of single yeast cells.
    Bisaria A; Hersen P; McClean MN
    Methods Mol Biol; 2014; 1205():111-29. PubMed ID: 25213242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. dMSCC: a microfluidic platform for microbial single-cell cultivation of
    Täuber S; Golze C; Ho P; von Lieres E; Grünberger A
    Lab Chip; 2020 Nov; 20(23):4442-4455. PubMed ID: 33095214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated analysis of dynamic behavior of single cells in picoliter droplets.
    Khorshidi MA; Rajeswari PK; Wählby C; Joensson HN; Andersson Svahn H
    Lab Chip; 2014 Mar; 14(5):931-7. PubMed ID: 24385254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron beam fabrication of a microfluidic device for studying submicron-scale bacteria.
    Moolman MC; Huang Z; Krishnan ST; Kerssemakers JW; Dekker NH
    J Nanobiotechnology; 2013 Apr; 11():12. PubMed ID: 23575419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling and CFD simulation of nutrient distribution in picoliter bioreactors for bacterial growth studies on single-cell level.
    Westerwalbesloh C; Grünberger A; Stute B; Weber S; Wiechert W; Kohlheyer D; von Lieres E
    Lab Chip; 2015 Nov; 15(21):4177-86. PubMed ID: 26345659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A microfluidic chip for the versatile chemical analysis of single cells.
    Eyer K; Kuhn P; Stratz S; Dittrich PS
    J Vis Exp; 2013 Oct; (80):e50618. PubMed ID: 24192501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A design and optimization of a high throughput valve based microfluidic device for single cell compartmentalization and analysis.
    Briones J; Espulgar W; Koyama S; Takamatsu H; Tamiya E; Saito M
    Sci Rep; 2021 Jun; 11(1):12995. PubMed ID: 34155296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Automated single cell microbioreactor for monitoring intracellular dynamics and cell growth in free solution.
    Johnson-Chavarria EM; Agrawal U; Tanyeri M; Kuhlman TE; Schroeder CM
    Lab Chip; 2014 Aug; 14(15):2688-97. PubMed ID: 24836754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laminar flow mediated continuous single-cell analysis on a novel poly(dimethylsiloxane) microfluidic chip.
    Deng B; Tian Y; Yu X; Song J; Guo F; Xiao Y; Zhang Z
    Anal Chim Acta; 2014 Apr; 820():104-11. PubMed ID: 24745743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silica-on-silicon waveguide integrated polydimethylsiloxane lab-on-a-chip for quantum dot fluorescence bio-detection.
    Ozhikandathil J; Packirisamy M
    J Biomed Opt; 2012 Jan; 17(1):017006. PubMed ID: 22352672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Technical bias of microcultivation environments on single-cell physiology.
    Dusny C; Grünberger A; Probst C; Wiechert W; Kohlheyer D; Schmid A
    Lab Chip; 2015 Apr; 15(8):1822-34. PubMed ID: 25710324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.