These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 24336165)
41. One-step micromolding of complex 3D microchambers for single-cell analysis. Suzuki H; Mitsuno K; Shiroguchi K; Tsugane M; Okano T; Dohi T; Tsuji T Lab Chip; 2017 Feb; 17(4):647-652. PubMed ID: 28150829 [TBL] [Abstract][Full Text] [Related]
42. An agar gel membrane-PDMS hybrid microfluidic device for long term single cell dynamic study. Wong I; Atsumi S; Huang WC; Wu TY; Hanai T; Lam ML; Tang P; Yang J; Liao JC; Ho CM Lab Chip; 2010 Oct; 10(20):2710-9. PubMed ID: 20664845 [TBL] [Abstract][Full Text] [Related]
43. Living Single Cell Analysis Platform Utilizing Microchannel, Single Cell Chamber, and Extended-nano Channel. Lin L; Mawatari K; Morikawa K; Kitamori T Anal Sci; 2016; 32(1):75-8. PubMed ID: 26753709 [TBL] [Abstract][Full Text] [Related]
44. A high-throughput microfluidic single-cell screening platform capable of selective cell extraction. Kim HS; Devarenne TP; Han A Lab Chip; 2015 Jun; 15(11):2467-75. PubMed ID: 25939721 [TBL] [Abstract][Full Text] [Related]
45. Quantifying a Biocatalytic Product from a Few Living Microbial Cells Using Microfluidic Cultivation Coupled to FT-ICR-MS. Dusny C; Lohse M; Reemtsma T; Schmid A; Lechtenfeld OJ Anal Chem; 2019 Jun; 91(11):7012-7018. PubMed ID: 31055912 [TBL] [Abstract][Full Text] [Related]
46. Fabrication and validation of a multi-channel type microfluidic chip for electrokinetic streaming potential devices. Chun MS; Shim MS; Choi NW Lab Chip; 2006 Feb; 6(2):302-9. PubMed ID: 16450042 [TBL] [Abstract][Full Text] [Related]
47. Microfluidic systems for live cell imaging. Lee P; Gaige T; Hung P Methods Cell Biol; 2011; 102():77-103. PubMed ID: 21704836 [TBL] [Abstract][Full Text] [Related]
48. Microfluidic mixer designed for performing single-molecule kinetics with confocal detection on timescales from milliseconds to minutes. Wunderlich B; Nettels D; Benke S; Clark J; Weidner S; Hofmann H; Pfeil SH; Schuler B Nat Protoc; 2013 Aug; 8(8):1459-74. PubMed ID: 23845960 [TBL] [Abstract][Full Text] [Related]
49. Cultivation and quantitative single-cell analysis of Saccharomyces cerevisiae on a multifunctional microfluidic device. Stratz S; Verboket PE; Hasler K; Dittrich PS Electrophoresis; 2018 Feb; 39(3):540-547. PubMed ID: 28880404 [TBL] [Abstract][Full Text] [Related]
50. Fabrication of multilayer-PDMS based microfluidic device for bio-particles concentration detection. Masrie M; Majlis BY; Yunas J Biomed Mater Eng; 2014; 24(6):1951-8. PubMed ID: 25226891 [TBL] [Abstract][Full Text] [Related]
51. Cell-based microfluidic device for screening anti-proliferative activity of drugs in vascular smooth muscle cells. Rodriguez-Rodriguez R; Muñoz-Berbel X; Demming S; Büttgenbach S; Herrera MD; Llobera A Biomed Microdevices; 2012 Dec; 14(6):1129-40. PubMed ID: 22773184 [TBL] [Abstract][Full Text] [Related]
52. Ultrasonic manipulation of single cells. Wiklund M; Onfelt B Methods Mol Biol; 2012; 853():177-96. PubMed ID: 22323148 [TBL] [Abstract][Full Text] [Related]
53. Sustainable fabrication of micro-structured lab-on-a-chip. Oh HJ; Park JH; Lee SJ; Kim BI; Song YS; Youn JR Lab Chip; 2011 Dec; 11(23):3999-4005. PubMed ID: 21918762 [TBL] [Abstract][Full Text] [Related]
54. High-efficiency single cell encapsulation and size selective capture of cells in picoliter droplets based on hydrodynamic micro-vortices. Kamalakshakurup G; Lee AP Lab Chip; 2017 Dec; 17(24):4324-4333. PubMed ID: 29138790 [TBL] [Abstract][Full Text] [Related]
55. A device for investigation of natural cell mobility and deformability. Ledvina V; Klepárník K; Legartová S; Bártová E Electrophoresis; 2020 Jul; 41(13-14):1238-1244. PubMed ID: 32358820 [TBL] [Abstract][Full Text] [Related]
56. Lab-on-a-chip for studying growing pollen tubes. Agudelo CG; Packirisamy M; Geitmann A Methods Mol Biol; 2014; 1080():237-48. PubMed ID: 24132434 [TBL] [Abstract][Full Text] [Related]
57. Rapid prototyping of PDMS devices using SU-8 lithography. Jenkins G Methods Mol Biol; 2013; 949():153-68. PubMed ID: 23329442 [TBL] [Abstract][Full Text] [Related]
58. Microfluidic Flow Cytometry for Single-Cell Protein Analysis. Wu M; Singh AK Methods Mol Biol; 2015; 1346():69-83. PubMed ID: 26542716 [TBL] [Abstract][Full Text] [Related]
59. A rapid prototyping method for polymer microfluidics with fixed aspect ratio and 3D tapered channels. Browne AW; Rust MJ; Jung W; Lee SH; Ahn CH Lab Chip; 2009 Oct; 9(20):2941-6. PubMed ID: 19789747 [TBL] [Abstract][Full Text] [Related]
60. Development and fabrication of nanoporous silicon-based bioreactors within a microfluidic chip. Retterer ST; Siuti P; Choi CK; Thomas DK; Doktycz MJ Lab Chip; 2010 May; 10(9):1174-81. PubMed ID: 20390137 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]