BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 24336188)

  • 1. Increases in terrestrially derived carbon stimulate organic carbon processing and CO₂ emissions in boreal aquatic ecosystems.
    Lapierre JF; Guillemette F; Berggren M; del Giorgio PA
    Nat Commun; 2013; 4():2972. PubMed ID: 24336188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of catchment characteristics on aquatic carbon export from a boreal catchment and its importance in regional carbon cycling.
    Huotari J; Nykänen H; Forsius M; Arvola L
    Glob Chang Biol; 2013 Dec; 19(12):3607-20. PubMed ID: 23893508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissolved organic carbon content and characteristics in relation to carbon dioxide partial pressure across Poyang Lake wetlands and adjacent aquatic systems in the Changjiang basin.
    Wang H; Jiao R; Wang F; Zhang L; Yan W
    Environ Pollut; 2016 Dec; 219():714-723. PubMed ID: 27431697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions.
    Huttunen JT; Alm J; Liikanen A; Juutinen S; Larmola T; Hammar T; Silvola J; Martikainen PJ
    Chemosphere; 2003 Jul; 52(3):609-21. PubMed ID: 12738299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon cycle. Sunlight controls water column processing of carbon in arctic fresh waters.
    Cory RM; Ward CP; Crump BC; Kling GW
    Science; 2014 Aug; 345(6199):925-8. PubMed ID: 25146289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amazon River carbon dioxide outgassing fuelled by wetlands.
    Abril G; Martinez JM; Artigas LF; Moreira-Turcq P; Benedetti MF; Vidal L; Meziane T; Kim JH; Bernardes MC; Savoye N; Deborde J; Souza EL; Albéric P; Landim de Souza MF; Roland F
    Nature; 2014 Jan; 505(7483):395-8. PubMed ID: 24336199
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Terrestrial reserve networks do not adequately represent aquatic ecosystems.
    Herbert ME; McIntyre PB; Doran PJ; Allan JD; Abell R
    Conserv Biol; 2010 Aug; 24(4):1002-11. PubMed ID: 20337671
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decrease in CO2 efflux from northern hardwater lakes with increasing atmospheric warming.
    Finlay K; Vogt RJ; Bogard MJ; Wissel B; Tutolo BM; Simpson GL; Leavitt PR
    Nature; 2015 Mar; 519(7542):215-8. PubMed ID: 25731167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for the respiration of ancient terrestrial organic C in northern temperate lakes and streams.
    McCallister SL; del Giorgio PA
    Proc Natl Acad Sci U S A; 2012 Oct; 109(42):16963-8. PubMed ID: 23027957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wetlands as long-term sources of metals to receiving waters in mining-impacted landscapes.
    Szkokan-Emilson EJ; Watmough SA; Gunn JM
    Environ Pollut; 2014 Sep; 192():91-103. PubMed ID: 24905257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lakes, wetlands, and streams as predictors of land use/cover distribution.
    Walsh SE; Soranno PA; Rutledge DT
    Environ Manage; 2003 Feb; 31(2):198-214. PubMed ID: 12520376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human activities cause distinct dissolved organic matter composition across freshwater ecosystems.
    Williams CJ; Frost PC; Morales-Williams AM; Larson JH; Richardson WB; Chiandet AS; Xenopoulos MA
    Glob Chang Biol; 2016 Feb; 22(2):613-26. PubMed ID: 26390994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inland waters and their role in the carbon cycle of Alaska.
    Stackpoole SM; Butman DE; Clow DW; Verdin KL; Gaglioti BV; Genet H; Striegl RG
    Ecol Appl; 2017 Jul; 27(5):1403-1420. PubMed ID: 28376236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aquatic carbon cycling in the conterminous United States and implications for terrestrial carbon accounting.
    Butman D; Stackpoole S; Stets E; McDonald CP; Clow DW; Striegl RG
    Proc Natl Acad Sci U S A; 2016 Jan; 113(1):58-63. PubMed ID: 26699473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anthropogenically driven climate and landscape change effects on inland water carbon dynamics: What have we learned and where are we going?
    Pilla RM; Griffiths NA; Gu L; Kao SC; McManamay R; Ricciuto DM; Shi X
    Glob Chang Biol; 2022 Oct; 28(19):5601-5629. PubMed ID: 35856254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-regulation of redox processes in freshwater wetlands as a function of organic matter availability?
    Alewell C; Paul S; Lischeid G; Storck FR
    Sci Total Environ; 2008 Oct; 404(2-3):335-42. PubMed ID: 18054998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry.
    Monteith DT; Stoddard JL; Evans CD; de Wit HA; Forsius M; Høgåsen T; Wilander A; Skjelkvåle BL; Jeffries DS; Vuorenmaa J; Keller B; Kopácek J; Vesely J
    Nature; 2007 Nov; 450(7169):537-40. PubMed ID: 18033294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing factors underlying variation of CO2 emissions in boreal lakes vs. reservoirs.
    Tadonléké RD; Marty J; Planas D
    FEMS Microbiol Ecol; 2012 Feb; 79(2):282-97. PubMed ID: 22092355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Freshwater methane emissions offset the continental carbon sink.
    Bastviken D; Tranvik LJ; Downing JA; Crill PM; Enrich-Prast A
    Science; 2011 Jan; 331(6013):50. PubMed ID: 21212349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The land-to-ocean loops of the global carbon cycle.
    Regnier P; Resplandy L; Najjar RG; Ciais P
    Nature; 2022 Mar; 603(7901):401-410. PubMed ID: 35296840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.