These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 24336316)

  • 1. Fe-catalyzed growth of one-dimensional α-Si3N4 nanostructures and their cathodoluminescence properties.
    Huang J; Huang Z; Yi S; Liu Y; Fang M; Zhang S
    Sci Rep; 2013 Dec; 3():3504. PubMed ID: 24336316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. β-Sialon nanowires, nanobelts and hierarchical nanostructures: morphology control, growth mechanism and cathodoluminescence properties.
    Huang J; Huang Z; Liu Y; Fang M; Chen K; Huang Y; Huang S; Ji H; Yang J; Wu X; Zhang S
    Nanoscale; 2014 Jan; 6(1):424-32. PubMed ID: 24212249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and carbothermal nitridation mechanism of ultra-long single crystal α-Si
    Wang B; Huang X; Zhou XN; Zhi Q; Hao LC; Li ZX; Zhao S; Hou BQ; Yang JF; Ishizaki K
    Nanotechnology; 2020 May; 31(19):194001. PubMed ID: 31978906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fe(NO3)3-assisted large-scale synthesis of Si₃N₄ nanobelts from quartz and graphite by carbothermal reduction-nitridation and their photoluminescence properties.
    Liu S; Fang M; Huang Z; Huang J; Ji H; Liu H; Liu YG; Wu X
    Sci Rep; 2015 Mar; 5():8998. PubMed ID: 25757903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel, low-cost solid-liquid-solid process for the synthesis of α-Si3N4 nanowires at lower temperatures and their luminescence properties.
    Liu H; Huang Z; Huang J; Fang M; Liu YG; Wu X; Hu X; Zhang S
    Sci Rep; 2015 Nov; 5():17250. PubMed ID: 26607395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of Different Si
    Liu X; Guo R; Zhang S; Li Q; Saito G; Yi X; Nomura T
    ACS Appl Mater Interfaces; 2018 Apr; 10(14):11852-11861. PubMed ID: 29537814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cathodoluminescence study of one-dimensional free-standing widegap-semiconductor nanostructures: GaN nanotubes, Si3N4 nanobelts and ZnS/Si nanowires.
    Sekiguchi T; Hu J; Bando Y
    J Electron Microsc (Tokyo); 2004; 53(2):203-8. PubMed ID: 15180217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of photoelectrical properties of α-Si3N4 nanobelts with surface modifications using first-principles calculations.
    Xiong L; Dai J; Song Y; Wen G; Qin C
    Phys Chem Chem Phys; 2016 Jun; 18(23):15686-96. PubMed ID: 27225041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orientation- and passivation-dependent stability and electronic properties of α-Si3N4 nanobelts.
    Xiong L; Dai J; Zhong B; Wen G; Song Y
    Phys Chem Chem Phys; 2014 Nov; 16(44):24266-74. PubMed ID: 25297683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalyst-nanostructure interfacial lattice mismatch in determining the shape of VLS grown nanowires and nanobelts: a case of Sn/ZnO.
    Ding Y; Gao PX; Wang ZL
    J Am Chem Soc; 2004 Feb; 126(7):2066-72. PubMed ID: 14971941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural Origin of the Band Gap Anomaly of Quaternary Alloy Cd(x)Zn(1-x)S(y)Se(1-y) Nanowires, Nanobelts, and Nanosheets in the Visible Spectrum.
    Kwon SJ; Jeong HM; Jung K; Ko DH; Ko H; Han IK; Kim GT; Park JG
    ACS Nano; 2015 May; 9(5):5486-99. PubMed ID: 25897466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The growth of ultralong and highly blue luminescent gallium oxide nanowires and nanobelts, and direct horizontal nanowire growth on substrates.
    Kuo CL; Huang MH
    Nanotechnology; 2008 Apr; 19(15):155604. PubMed ID: 21825618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On-nanowire spatial band gap design for white light emission.
    Yang Z; Xu J; Wang P; Zhuang X; Pan A; Tong L
    Nano Lett; 2011 Nov; 11(11):5085-9. PubMed ID: 22011228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalyst-free vapour-solid technique for deposition of Bi2Te3 and Bi2Se3 nanowires/nanobelts with topological insulator properties.
    Andzane J; Kunakova G; Charpentier S; Hrkac V; Kienle L; Baitimirova M; Bauch T; Lombardi F; Erts D
    Nanoscale; 2015 Oct; 7(38):15935-44. PubMed ID: 26365282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis, growth mechanism, and light-emission properties of twisted SiO2 nanobelts and nanosprings.
    Zhang ZY; Wu XL; Xu LL; Shen JC; Siu GG; Chu PK
    J Chem Phys; 2008 Oct; 129(16):164702. PubMed ID: 19045293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Si
    Tong Z; Zhang B; Yu H; Yan X; Xu H; Li X; Ji H
    ACS Appl Mater Interfaces; 2021 May; 13(19):22765-22773. PubMed ID: 33947180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical and Optical Properties of Au-Catalyzed GaAs Nanowires Grown on Si (111) Substrate by Molecular Beam Epitaxy.
    Wang CY; Hong YC; Ko ZJ; Su YW; Huang JH
    Nanoscale Res Lett; 2017 Dec; 12(1):290. PubMed ID: 28438011
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-dimensional self-assembly of planar pi-conjugated molecules: adaptable building blocks for organic nanodevices.
    Zang L; Che Y; Moore JS
    Acc Chem Res; 2008 Dec; 41(12):1596-608. PubMed ID: 18616298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled synthesis of ultra-long AlN nanowires in different densities and in situ investigation of the physical properties of an individual AlN nanowire.
    Liu F; Su ZJ; Mo FY; Li L; Chen ZS; Liu QR; Chen J; Deng SZ; Xu NS
    Nanoscale; 2011 Feb; 3(2):610-8. PubMed ID: 21103529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local defect-induced red-shift of cathodoluminescence in individual ZnS nanobelts.
    Liu BD; Yang B; Dierre B; Sekiguchi T; Jiang X
    Nanoscale; 2014 Nov; 6(21):12414-20. PubMed ID: 25238442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.