BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 24336442)

  • 1. Best practices for determining resting energy expenditure in critically ill adults.
    Schlein KM; Coulter SP
    Nutr Clin Pract; 2014 Feb; 29(1):44-55. PubMed ID: 24336442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Indirect calorimetry: a guide for optimizing nutritional support in the critically ill child.
    Sion-Sarid R; Cohen J; Houri Z; Singer P
    Nutrition; 2013 Sep; 29(9):1094-9. PubMed ID: 23927944
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate determination of energy needs in hospitalized patients.
    Boullata J; Williams J; Cottrell F; Hudson L; Compher C
    J Am Diet Assoc; 2007 Mar; 107(3):393-401. PubMed ID: 17324656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preventing Underfeeding and Overfeeding: A Clinician's Guide to the Acquisition and Implementation of Indirect Calorimetry.
    Ladd AK; Skillman HE; Haemer MA; Mourani PM
    Nutr Clin Pract; 2018 Apr; 33(2):198-205. PubMed ID: 28549221
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Introducing a new generation indirect calorimeter for estimating energy requirements in adult intensive care unit patients: feasibility, practical considerations, and comparison with a mathematical equation.
    De Waele E; Spapen H; Honoré PM; Mattens S; Van Gorp V; Diltoer M; Huyghens L
    J Crit Care; 2013 Oct; 28(5):884.e1-6. PubMed ID: 23561944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nutrition support of the postoperative cardiac surgery child.
    Leong AY; Field CJ; Larsen BM
    Nutr Clin Pract; 2013 Oct; 28(5):572-9. PubMed ID: 23921299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical Guide for the Use of Metabolic Carts: Indirect Calorimetry--No Longer the Orphan of Energy Estimation.
    Singer P; Singer J
    Nutr Clin Pract; 2016 Feb; 31(1):30-8. PubMed ID: 26703959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indirect calorimetry: applications in practice.
    Wooley JA
    Respir Care Clin N Am; 2006 Dec; 12(4):619-33. PubMed ID: 17150435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive alterations in metabolism: practical consequences on energy requirements in the severely ill patient.
    Fontaine E; Müller MJ
    Curr Opin Clin Nutr Metab Care; 2011 Mar; 14(2):171-5. PubMed ID: 21178609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Guidelines for specialized nutritional and metabolic support in the critically-ill patient: update. Consensus SEMICYUC-SENPE: obese patient.
    Mesejo A; Sánchez Álvarez C; Arboleda Sánchez JA;
    Nutr Hosp; 2011 Nov; 26 Suppl 2():54-8. PubMed ID: 22411521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prevalence of Underprescription or Overprescription of Energy Needs in Critically Ill Mechanically Ventilated Adults as Determined by Indirect Calorimetry: A Systematic Literature Review.
    Tatucu-Babet OA; Ridley EJ; Tierney AC
    JPEN J Parenter Enteral Nutr; 2016 Feb; 40(2):212-25. PubMed ID: 25605706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical activity as a determinant of total energy expenditure in critically ill children.
    van der Kuip M; de Meer K; Westerterp KR; Gemke RJ
    Clin Nutr; 2007 Dec; 26(6):744-51. PubMed ID: 17949862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determining energy needs in critically ill patients: equations or indirect calorimeters.
    Cooney RN; Frankenfield DC
    Curr Opin Crit Care; 2012 Apr; 18(2):174-7. PubMed ID: 22322264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy requirements and the use of predictive equations versus indirect calorimetry in critically ill patients.
    Wichansawakun S; Meddings L; Alberda C; Robbins S; Gramlich L
    Appl Physiol Nutr Metab; 2015 Feb; 40(2):207-10. PubMed ID: 25610953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation Study of Energy Requirements in Critically Ill, Obese Cancer Patients.
    Tajchman SK; Tucker AM; Cardenas-Turanzas M; Nates JL
    JPEN J Parenter Enteral Nutr; 2016 Aug; 40(6):806-13. PubMed ID: 25754439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predictive equations for energy needs for the critically ill.
    Walker RN; Heuberger RA
    Respir Care; 2009 Apr; 54(4):509-21. PubMed ID: 19327188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resting energy expenditure, calorie and protein consumption in critically ill patients: a retrospective cohort study.
    Zusman O; Theilla M; Cohen J; Kagan I; Bendavid I; Singer P
    Crit Care; 2016 Nov; 20(1):367. PubMed ID: 27832823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Indirect calorimetry in nutritional therapy. A position paper by the ICALIC study group.
    Oshima T; Berger MM; De Waele E; Guttormsen AB; Heidegger CP; Hiesmayr M; Singer P; Wernerman J; Pichard C
    Clin Nutr; 2017 Jun; 36(3):651-662. PubMed ID: 27373497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of resting energy expenditure prediction methods with measured resting energy expenditure in obese, hospitalized adults.
    Anderegg BA; Worrall C; Barbour E; Simpson KN; Delegge M
    JPEN J Parenter Enteral Nutr; 2009; 33(2):168-75. PubMed ID: 19251910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of indirect calorimetry in the intensive care unit.
    McClave SA; Martindale RG; Kiraly L
    Curr Opin Clin Nutr Metab Care; 2013 Mar; 16(2):202-8. PubMed ID: 23340008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.