BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 24336462)

  • 1. A fluorescence turn-on sensor for the detection of palladium ions that operates through in situ generation of palladium nanoparticles.
    Keum D; Kim S; Kim Y
    Chem Commun (Camb); 2014 Feb; 50(10):1268-70. PubMed ID: 24336462
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An ascorbic acid amperometric sensor using over-oxidized polypyrrole and palladium nanoparticles composites.
    Shi W; Liu C; Song Y; Lin N; Zhou S; Cai X
    Biosens Bioelectron; 2012; 38(1):100-6. PubMed ID: 22651968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colorimetric sensing of palladium ions based on in situ generation of palladium nanoparticles as an activator for the thionine-hydrazine reaction.
    Pourreza N; Abdollahzadeh R
    Talanta; 2019 May; 196():211-216. PubMed ID: 30683353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly selective fluorescence turn-on sensing of gold ions by a nanoparticle generation/C-I bond cleavage sequence.
    Park J; Choi S; Kim TI; Kim Y
    Analyst; 2012 Oct; 137(19):4411-4. PubMed ID: 22866326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ synthesis of palladium nanoparticle-graphene nanohybrids and their application in nonenzymatic glucose biosensors.
    Lu LM; Li HB; Qu F; Zhang XB; Shen GL; Yu RQ
    Biosens Bioelectron; 2011 Apr; 26(8):3500-4. PubMed ID: 21342759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel non-enzymatic ECL sensor for glucose using palladium nanoparticles supported on functional carbon nanotubes.
    Chen XM; Cai ZM; Lin ZJ; Jia TT; Liu HZ; Jiang YQ; Chen X
    Biosens Bioelectron; 2009 Aug; 24(12):3475-80. PubMed ID: 19482465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning the surfaces of palladium nanoparticles for the catalytic conversion of Cr(VI) to Cr(III).
    K'Owino IO; Omole MA; Sadik OA
    J Environ Monit; 2007 Jul; 9(7):657-65. PubMed ID: 17607385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An electrochemical ascorbic acid sensor based on palladium nanoparticles supported on graphene oxide.
    Wu GH; Wu YF; Liu XW; Rong MC; Chen XM; Chen X
    Anal Chim Acta; 2012 Oct; 745():33-7. PubMed ID: 22938603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly amplified electrochemiluminescence of peroxydisulfate using bienzyme functionalized palladium nanoparticles as labels for ultrasensitive immunoassay.
    Niu H; Yuan R; Chai Y; Mao L; Liu H; Cao Y
    Biosens Bioelectron; 2013 Jan; 39(1):296-9. PubMed ID: 22857905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel and simple approach for synthesis of palladium nanoparticles on carbon nanotubes for sensitive hydrogen peroxide detection.
    Zhang WJ; Bai L; Lu LM; Chen Z
    Colloids Surf B Biointerfaces; 2012 Sep; 97():145-9. PubMed ID: 22609595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonenzymatic amperometric sensing of glucose by using palladium nanoparticles supported on functional carbon nanotubes.
    Chen XM; Lin ZJ; Chen DJ; Jia TT; Cai ZM; Wang XR; Chen X; Chen GN; Oyama M
    Biosens Bioelectron; 2010 Mar; 25(7):1803-8. PubMed ID: 20080042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel ratiometric sensor for the fast detection of palladium species with large red-shift and high resolution both in aqueous solution and solid state.
    Cui L; Zhu W; Xu Y; Qian X
    Anal Chim Acta; 2013 Jul; 786():139-45. PubMed ID: 23790303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Palladium nanoparticle/chitosan-grafted graphene nanocomposites for construction of a glucose biosensor.
    Zeng Q; Cheng JS; Liu XF; Bai HT; Jiang JH
    Biosens Bioelectron; 2011 Apr; 26(8):3456-63. PubMed ID: 21324668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective turn-on fluorescence sensor for Ag+ using cysteamine capped CdS quantum dots: determination of free Ag+ in silver nanoparticles solution.
    Khantaw T; Boonmee C; Tuntulani T; Ngeontae W
    Talanta; 2013 Oct; 115():849-56. PubMed ID: 24054673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A cost-effective and practical polybenzanthrone-based fluorescent sensor for efficient determination of palladium (II) ion and its application in agricultural crops and environment.
    Zhang G; Wen Y; Guo C; Xu J; Lu B; Duan X; He H; Yang J
    Anal Chim Acta; 2013 Dec; 805():87-94. PubMed ID: 24296147
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of hydrophobic palladium nanoparticles for the development of electrochemical glucose biosensor.
    Li Z; Wang X; Wen G; Shuang S; Dong C; Paau MC; Choi MM
    Biosens Bioelectron; 2011 Jul; 26(11):4619-23. PubMed ID: 21612909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. BODIPY-based fluorometric sensor array for the highly sensitive identification of heavy-metal ions.
    Niu LY; Li H; Feng L; Guan YS; Chen YZ; Duan CF; Wu LZ; Guan YF; Tung CH; Yang QZ
    Anal Chim Acta; 2013 May; 775():93-9. PubMed ID: 23601979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly sensitive and selective chip-based fluorescent sensor for mercuric ion: development and comparison of turn-on and turn-off systems.
    Du J; Liu M; Lou X; Zhao T; Wang Z; Xue Y; Zhao J; Xu Y
    Anal Chem; 2012 Sep; 84(18):8060-6. PubMed ID: 22957843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A highly selective and sensitive BODIPY-based colourimetric and turn-on fluorescent sensor for Hg2+ ions.
    Jiang XJ; Wong CL; Lo PC; Ng DK
    Dalton Trans; 2012 Feb; 41(6):1801-7. PubMed ID: 22159311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. "Turn-on" fluorescent sensor for Hg2+ based on single-stranded DNA functionalized Mn:CdS/ZnS quantum dots and gold nanoparticles by time-gated mode.
    Huang D; Niu C; Wang X; Lv X; Zeng G
    Anal Chem; 2013 Jan; 85(2):1164-70. PubMed ID: 23256544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.