These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 24336462)

  • 21. In situ generation of palladium nanoparticles: a simple and highly active protocol for oxygen-promoted ligand-free suzuki coupling reaction of aryl chlorides.
    Han W; Liu C; Jin ZL
    Org Lett; 2007 Sep; 9(20):4005-7. PubMed ID: 17760456
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A hydrogen peroxide biosensor based on direct electrochemistry of hemoglobin in palladium nanoparticles/graphene-chitosan nanocomposite film.
    Sun A; Sheng Q; Zheng J
    Appl Biochem Biotechnol; 2012 Feb; 166(3):764-73. PubMed ID: 22139732
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fluorogenic and chromogenic detection of palladium species through a catalytic conversion of a rhodamine B derivative.
    Jun ME; Ahn KH
    Org Lett; 2010 Jun; 12(12):2790-3. PubMed ID: 20469922
    [TBL] [Abstract][Full Text] [Related]  

  • 24. "Homeopathic" palladium nanoparticle catalysis of cross carbon-carbon coupling reactions.
    Deraedt C; Astruc D
    Acc Chem Res; 2014 Feb; 47(2):494-503. PubMed ID: 24215156
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A thin-layer chromatography plate prepared from BODIPY-based receptor immobilized SiO2 nanoparticles as a portable chemosensor for Pb2+.
    Son H; Kang G; Jung JH
    Analyst; 2012 Jan; 137(1):163-9. PubMed ID: 22080041
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fluorescent gold nanoparticles-based fluorescence sensor for Cu2+ ions.
    Chen W; Tu X; Guo X
    Chem Commun (Camb); 2009 Apr; (13):1736-8. PubMed ID: 19294279
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of a potassium ion-selective fluorescent sensor based on 3-styrylated BODIPY.
    Hirata T; Terai T; Komatsu T; Hanaoka K; Nagano T
    Bioorg Med Chem Lett; 2011 Oct; 21(20):6090-3. PubMed ID: 21906942
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Highly sensitive and fast-responsive fluorescent chemosensor for palladium: reversible sensing and visible recovery.
    Li H; Fan J; Hu M; Cheng G; Zhou D; Wu T; Song F; Sun S; Duan C; Peng X
    Chemistry; 2012 Sep; 18(39):12242-50. PubMed ID: 22968904
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Palladium nanoparticles captured in microporous polymers: a tailor-made catalyst for heterogeneous carbon cross-coupling reactions.
    Ogasawara S; Kato S
    J Am Chem Soc; 2010 Apr; 132(13):4608-13. PubMed ID: 20225817
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A fluorescent sensor for pyrophosphate based on a Pd(II) complex.
    Gao J; Riis-Johannessen T; Scopelliti R; Qian X; Severin K
    Dalton Trans; 2010 Aug; 39(30):7114-8. PubMed ID: 20582340
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A selective fluorescence probe for mercury ion based on the fluorescence quenching of terbium(III)-doped cadmium sulfide composite nanoparticles.
    Fu J; Wang L; Chen H; Bo L; Zhou C; Chen J
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Oct; 77(3):625-9. PubMed ID: 20663708
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fluorescent nanoparticles assembled from a poly(ionic liquid) for selective sensing of copper ions.
    Cui K; Lu X; Cui W; Wu J; Chen X; Lu Q
    Chem Commun (Camb); 2011 Jan; 47(3):920-2. PubMed ID: 21079827
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ratiometric fluorescence detection of mercury ions in water by conjugated polymer nanoparticles.
    Childress ES; Roberts CA; Sherwood DY; LeGuyader CL; Harbron EJ
    Anal Chem; 2012 Feb; 84(3):1235-9. PubMed ID: 22280026
    [TBL] [Abstract][Full Text] [Related]  

  • 34. "Turn-on" chemiluminescence sensor for the highly selective and ultrasensitive detection of Hg2+ ions based on interstrand cooperative coordination and catalytic formation of gold nanoparticles.
    Cai S; Lao K; Lau C; Lu J
    Anal Chem; 2011 Dec; 83(24):9702-8. PubMed ID: 22049919
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A reusable DNA single-walled carbon-nanotube-based fluorescent sensor for highly sensitive and selective detection of Ag+ and cysteine in aqueous solutions.
    Zhao C; Qu K; Song Y; Xu C; Ren J; Qu X
    Chemistry; 2010 Jul; 16(27):8147-54. PubMed ID: 20512822
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanocomposites of palladium nanoparticle-loaded mesoporous carbon nanospheres for the electrochemical determination of hydrogen peroxide.
    Bian X; Guo K; Liao L; Xiao J; Kong J; Ji C; Liu B
    Talanta; 2012 Sep; 99():256-61. PubMed ID: 22967549
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nonenzymatic electrochemical detection of glucose based on palladium-single-walled carbon nanotube hybrid nanostructures.
    Meng L; Jin J; Yang G; Lu T; Zhang H; Cai C
    Anal Chem; 2009 Sep; 81(17):7271-80. PubMed ID: 19715358
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A fluorescence turn-on sensor for iodide based on a thymine-Hg(II)-thymine complex.
    Ma B; Zeng F; Zheng F; Wu S
    Chemistry; 2011 Dec; 17(52):14844-50. PubMed ID: 22113734
    [TBL] [Abstract][Full Text] [Related]  

  • 39. "Turn-on" fluorescence detection of lead ions based on accelerated leaching of gold nanoparticles on the surface of graphene.
    Fu X; Lou T; Chen Z; Lin M; Feng W; Chen L
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):1080-6. PubMed ID: 22264012
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Seed-mediated growth of palladium nanocrystals on indium tin oxide surfaces and their applicability as modified electrodes.
    Chang G; Oyama M; Hirao K
    J Phys Chem B; 2006 Oct; 110(41):20362-8. PubMed ID: 17034219
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.