BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 24336471)

  • 1. Resin-assisted enrichment of thiols as a general strategy for proteomic profiling of cysteine-based reversible modifications.
    Guo J; Gaffrey MJ; Su D; Liu T; Camp DG; Smith RD; Qian WJ
    Nat Protoc; 2014 Jan; 9(1):64-75. PubMed ID: 24336471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic identification and quantification of S-glutathionylation in mouse macrophages using resin-assisted enrichment and isobaric labeling.
    Su D; Gaffrey MJ; Guo J; Hatchell KE; Chu RK; Clauss TR; Aldrich JT; Wu S; Purvine S; Camp DG; Smith RD; Thrall BD; Qian WJ
    Free Radic Biol Med; 2014 Feb; 67():460-70. PubMed ID: 24333276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-Specific Proteomic Mapping of Modified Cysteine Residues.
    Gould NS
    Methods Mol Biol; 2019; 1967():183-195. PubMed ID: 31069771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solid-phase capture for the detection and relative quantification of S-nitrosoproteins by mass spectrometry.
    Thompson JW; Forrester MT; Moseley MA; Foster MW
    Methods; 2013 Aug; 62(2):130-7. PubMed ID: 23064468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large-scale capture of peptides containing reversibly oxidized cysteines by thiol-disulfide exchange applied to the myocardial redox proteome.
    Paulech J; Solis N; Edwards AV; Puckeridge M; White MY; Cordwell SJ
    Anal Chem; 2013 Apr; 85(7):3774-80. PubMed ID: 23438843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput endogenous measurement of S-nitrosylation in Alzheimer's disease using oxidized cysteine-selective cPILOT.
    Gu L; Robinson RA
    Analyst; 2016 Jun; 141(12):3904-15. PubMed ID: 27152368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activity-Based Sensing for Site-Specific Proteomic Analysis of Cysteine Oxidation.
    Shi Y; Carroll KS
    Acc Chem Res; 2020 Jan; 53(1):20-31. PubMed ID: 31869209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Resin-Assisted Capture Coupled with Isobaric Tandem Mass Tag Labeling for Multiplexed Quantification of Protein Thiol Oxidation.
    Gaffrey MJ; Day NJ; Li X; Qian WJ
    J Vis Exp; 2021 Jun; (172):. PubMed ID: 34223836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple isotopic labeling method to study cysteine oxidation in Alzheimer's disease: oxidized cysteine-selective dimethylation (OxcysDML).
    Gu L; Robinson RA
    Anal Bioanal Chem; 2016 Apr; 408(11):2993-3004. PubMed ID: 26800981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and quantification of S-nitrosylation by cysteine reactive tandem mass tag switch assay.
    Murray CI; Uhrigshardt H; O'Meally RN; Cole RN; Van Eyk JE
    Mol Cell Proteomics; 2012 Feb; 11(2):M111.013441. PubMed ID: 22126794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative site-specific reactivity profiling of S-nitrosylation in mouse skeletal muscle using cysteinyl peptide enrichment coupled with mass spectrometry.
    Su D; Shukla AK; Chen B; Kim JS; Nakayasu E; Qu Y; Aryal U; Weitz K; Clauss TR; Monroe ME; Camp DG; Bigelow DJ; Smith RD; Kulkarni RN; Qian WJ
    Free Radic Biol Med; 2013 Apr; 57():68-78. PubMed ID: 23277143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SNOSID, a proteomic method for identification of cysteine S-nitrosylation sites in complex protein mixtures.
    Hao G; Derakhshan B; Shi L; Campagne F; Gross SS
    Proc Natl Acad Sci U S A; 2006 Jan; 103(4):1012-7. PubMed ID: 16418269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteome-wide light/dark modulation of thiol oxidation in cyanobacteria revealed by quantitative site-specific redox proteomics.
    Guo J; Nguyen AY; Dai Z; Su D; Gaffrey MJ; Moore RJ; Jacobs JM; Monroe ME; Smith RD; Koppenaal DW; Pakrasi HB; Qian WJ
    Mol Cell Proteomics; 2014 Dec; 13(12):3270-85. PubMed ID: 25118246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring in vivo reversible cysteine oxidation in proteins using ICAT and mass spectrometry.
    García-Santamarina S; Boronat S; Domènech A; Ayté J; Molina H; Hidalgo E
    Nat Protoc; 2014 May; 9(5):1131-45. PubMed ID: 24743420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomics approaches to study the redox state of cysteine-containing proteins.
    Camerini S; Polci ML; Bachi A
    Ann Ist Super Sanita; 2005; 41(4):451-7. PubMed ID: 16569913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Covalent selection of the thiol proteome on activated thiol sepharose: a robust tool for redox proteomics.
    Hu W; Tedesco S; Faedda R; Petrone G; Cacciola SO; O'Keefe A; Sheehan D
    Talanta; 2010 Feb; 80(4):1569-75. PubMed ID: 20082816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative proteomic characterization of redox-dependent post-translational modifications on protein cysteines.
    Duan J; Gaffrey MJ; Qian WJ
    Mol Biosyst; 2017 May; 13(5):816-829. PubMed ID: 28357434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Expanding Landscape of the Thiol Redox Proteome.
    Yang J; Carroll KS; Liebler DC
    Mol Cell Proteomics; 2016 Jan; 15(1):1-11. PubMed ID: 26518762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thiol Redox Proteomics for Identifying Redox-Sensitive Cysteine Residues Within the Protein of Interest During Stress.
    Vogelsang L; Eirich J; Finkemeier I; Dietz KJ
    Methods Mol Biol; 2024; 2832():99-113. PubMed ID: 38869790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous Enrichment of Cysteine-containing Peptides and Phosphopeptides Using a Cysteine-specific Phosphonate Adaptable Tag (CysPAT) in Combination with titanium dioxide (TiO2) Chromatography.
    Huang H; Haar Petersen M; Ibañez-Vea M; Lassen PS; Larsen MR; Palmisano G
    Mol Cell Proteomics; 2016 Oct; 15(10):3282-3296. PubMed ID: 27281782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.