These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 24336838)
1. Visual detection of telomerase activity with a tunable dynamic range by using a gold nanoparticle probe-based hybridization protection strategy. Wang J; Wu L; Ren J; Qu X Nanoscale; 2014; 6(3):1661-6. PubMed ID: 24336838 [TBL] [Abstract][Full Text] [Related]
2. Colorimetry and SERS dual-mode detection of telomerase activity: combining rapid screening with high sensitivity. Zong S; Wang Z; Chen H; Hu G; Liu M; Chen P; Cui Y Nanoscale; 2014; 6(3):1808-16. PubMed ID: 24356868 [TBL] [Abstract][Full Text] [Related]
3. Exonuclease I manipulating primer-modified gold nanoparticles for colorimetric telomerase activity assay. Zhang L; Zhang S; Pan W; Liang Q; Song X Biosens Bioelectron; 2016 Mar; 77():144-8. PubMed ID: 26402592 [TBL] [Abstract][Full Text] [Related]
4. Label-free detection of specific DNA sequence-telomere using unmodified gold nanoparticles as colorimetric probes. Qi Y; Li L; Li B Spectrochim Acta A Mol Biomol Spectrosc; 2009 Sep; 74(1):127-31. PubMed ID: 19523870 [TBL] [Abstract][Full Text] [Related]
5. A PCR-free colorimetric strategy for visualized assay of telomerase activity. Yu T; Zhao W; Xu JJ; Chen HY Talanta; 2018 Feb; 178():594-599. PubMed ID: 29136868 [TBL] [Abstract][Full Text] [Related]
6. Sensitive electrochemical detection of telomerase activity using spherical nucleic acids gold nanoparticles triggered mimic-hybridization chain reaction enzyme-free dual signal amplification. Wang WJ; Li JJ; Rui K; Gai PP; Zhang JR; Zhu JJ Anal Chem; 2015 Mar; 87(5):3019-26. PubMed ID: 25669135 [TBL] [Abstract][Full Text] [Related]
7. Visualizing human telomerase activity with primer-modified Au nanoparticles. Wang J; Wu L; Ren J; Qu X Small; 2012 Jan; 8(2):259-64. PubMed ID: 22083963 [TBL] [Abstract][Full Text] [Related]
8. Enzyme-free colorimetric detection of DNA by using gold nanoparticles and hybridization chain reaction amplification. Liu P; Yang X; Sun S; Wang Q; Wang K; Huang J; Liu J; He L Anal Chem; 2013 Aug; 85(16):7689-95. PubMed ID: 23895103 [TBL] [Abstract][Full Text] [Related]
9. A simple colorimetric DNA detection by target-induced hybridization chain reaction for isothermal signal amplification. Ma C; Wang W; Mulchandani A; Shi C Anal Biochem; 2014 Jul; 457():19-23. PubMed ID: 24780220 [TBL] [Abstract][Full Text] [Related]
10. Simple and rapid colorimetric detection of cofactors of aptazymes using noncrosslinking gold nanoparticle aggregation. Ogawa A; Maeda M Bioorg Med Chem Lett; 2008 Dec; 18(24):6517-20. PubMed ID: 18952416 [TBL] [Abstract][Full Text] [Related]
11. Nucleic acid-regulated perylene probe-induced gold nanoparticle aggregation: a new strategy for colorimetric sensing of alkaline phosphatase activity and inhibitor screening. Jiao H; Chen J; Li W; Wang F; Zhou H; Li Y; Yu C ACS Appl Mater Interfaces; 2014 Feb; 6(3):1979-85. PubMed ID: 24417549 [TBL] [Abstract][Full Text] [Related]
12. Effects of Mn2+ on oligonucleotide-gold nanoparticle hybrids for colorimetric sensing of Hg2+: improving colorimetric sensitivity and accelerating color change. Yu CJ; Cheng TL; Tseng WL Biosens Bioelectron; 2009 Sep; 25(1):204-10. PubMed ID: 19631521 [TBL] [Abstract][Full Text] [Related]
13. Sensitive detection of glucose in human serum with oligonucleotide modified gold nanoparticles by using dynamic light scattering technique. Miao X; Ling L; Shuai X Biosens Bioelectron; 2013 Mar; 41():880-3. PubMed ID: 23084753 [TBL] [Abstract][Full Text] [Related]
14. Colorimetric detection of c-Kit mutations using electrostatic attraction induced aggregation of peptide nucleic acid modified gold nanoparticles. Lee H; Kim A; Ahn IS; Joo SW; Lee SY; Yoon KA; Lee K Chem Commun (Camb); 2011 Nov; 47(41):11477-9. PubMed ID: 21952354 [TBL] [Abstract][Full Text] [Related]
15. Simple colorimetric sensing of trace bleomycin using unmodified gold nanoparticles. Li F; Feng Y; Zhao C; Tang B Biosens Bioelectron; 2011 Jul; 26(11):4628-31. PubMed ID: 21664122 [TBL] [Abstract][Full Text] [Related]
16. General colorimetric detection of proteins and small molecules based on cyclic enzymatic signal amplification and hairpin aptamer probe. Li J; Fu HE; Wu LJ; Zheng AX; Chen GN; Yang HH Anal Chem; 2012 Jun; 84(12):5309-15. PubMed ID: 22642720 [TBL] [Abstract][Full Text] [Related]
17. Visual electrochemiluminescence detection of telomerase activity based on multifunctional Au nanoparticles modified with G-quadruplex deoxyribozyme and luminol. Zhang HR; Wang YZ; Wu MS; Feng QM; Shi HW; Chen HY; Xu JJ Chem Commun (Camb); 2014 Oct; 50(83):12575-7. PubMed ID: 25199068 [TBL] [Abstract][Full Text] [Related]
18. Gold nanoparticle-based probes for the colorimetric detection of Mycobacterium avium subspecies paratuberculosis DNA. Ganareal TACS; Balbin MM; Monserate JJ; Salazar JR; Mingala CN Biochem Biophys Res Commun; 2018 Feb; 496(3):988-997. PubMed ID: 29366791 [TBL] [Abstract][Full Text] [Related]
19. A gold nanoparticles-based colorimetric assay for alkaline phosphatase detection with tunable dynamic range. Li CM; Zhen SJ; Wang J; Li YF; Huang CZ Biosens Bioelectron; 2013 May; 43():366-71. PubMed ID: 23356994 [TBL] [Abstract][Full Text] [Related]
20. Graphene-mesoporous silica-dispersed palladium nanoparticles-based probe carrier platform for electrocatalytic sensing of telomerase activity at less than single-cell level. Wu L; Wang J; Sun H; Ren J; Qu X Adv Healthc Mater; 2014 Apr; 3(4):588-95. PubMed ID: 24039181 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]