BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1012 related articles for article (PubMed ID: 24337073)

  • 1. Electrochemical properties of CVD grown pristine graphene: monolayer- vs. quasi-graphene.
    Brownson DA; Varey SA; Hussain F; Haigh SJ; Banks CE
    Nanoscale; 2014; 6(3):1607-21. PubMed ID: 24337073
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical properties of vertically aligned graphenes: tailoring heterogeneous electron transfer through manipulation of the carbon microstructure.
    Brownson DAC; Garcia-Miranda Ferrari A; Ghosh S; Kamruddin M; Iniesta J; Banks CE
    Nanoscale Adv; 2020 Nov; 2(11):5319-5328. PubMed ID: 36132042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the reactivity of distinct electron transfer sites at CVD grown monolayer graphene through the selective electrodeposition of MoO
    García-Miranda Ferrari A; Foster CW; Brownson DAC; Whitehead KA; Banks CE
    Sci Rep; 2019 Sep; 9(1):12814. PubMed ID: 31492903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemistry of Q-graphene.
    Randviir EP; Brownson DA; Gómez-Mingot M; Kampouris DK; Iniesta J; Banks CE
    Nanoscale; 2012 Oct; 4(20):6470-80. PubMed ID: 22961209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Defining the origins of electron transfer at screen-printed graphene-like and graphite electrodes: MoO2 nanowire fabrication on edge plane sites reveals electrochemical insights.
    Rowley-Neale SJ; Brownson DA; Banks CE
    Nanoscale; 2016 Aug; 8(33):15241-51. PubMed ID: 27487988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The electrochemical performance of graphene modified electrodes: an analytical perspective.
    Brownson DA; Foster CW; Banks CE
    Analyst; 2012 Apr; 137(8):1815-23. PubMed ID: 22403764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison and reappraisal of carbon electrodes for the voltammetric detection of dopamine.
    Patel AN; Tan SY; Miller TS; Macpherson JV; Unwin PR
    Anal Chem; 2013 Dec; 85(24):11755-64. PubMed ID: 24308368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the electrochemical performance of graphite and graphene paste electrodes composed of varying lateral flake sizes.
    Slate AJ; Brownson DAC; Abo Dena AS; Smith GC; Whitehead KA; Banks CE
    Phys Chem Chem Phys; 2018 Aug; 20(30):20010-20022. PubMed ID: 30022207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of levels of defect sites present in highly ordered pyrolytic graphite electrodes using capacitive and faradaic current components derived simultaneously from large-amplitude Fourier transformed ac voltammetric experiments.
    Lee CY; Bond AM
    Anal Chem; 2009 Jan; 81(2):584-94. PubMed ID: 19140776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring the electrochemical performance of graphitic paste electrodes: graphene vs. graphite.
    Figueiredo-Filho LC; Brownson DA; Gómez-Mingot M; Iniesta J; Fatibello-Filho O; Banks CE
    Analyst; 2013 Nov; 138(21):6354-64. PubMed ID: 24010127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The fabrication, characterisation and electrochemical investigation of screen-printed graphene electrodes.
    Randviir EP; Brownson DA; Metters JP; Kadara RO; Banks CE
    Phys Chem Chem Phys; 2014 Mar; 16(10):4598-611. PubMed ID: 24458292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laser-scribed graphene presents an opportunity to print a new generation of disposable electrochemical sensors.
    Griffiths K; Dale C; Hedley J; Kowal MD; Kaner RB; Keegan N
    Nanoscale; 2014 Nov; 6(22):13613-22. PubMed ID: 25274421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reproducible, stable and fast electrochemical activity from easy to make graphene on copper electrodes.
    Bosch-Navarro C; Laker ZP; Rourke JP; Wilson NR
    Phys Chem Chem Phys; 2015 Nov; 17(44):29628-36. PubMed ID: 26477748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new view of electrochemistry at highly oriented pyrolytic graphite.
    Patel AN; Collignon MG; O'Connell MA; Hung WO; McKelvey K; Macpherson JV; Unwin PR
    J Am Chem Soc; 2012 Dec; 134(49):20117-30. PubMed ID: 23145936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale Electrochemistry of sp(2) Carbon Materials: From Graphite and Graphene to Carbon Nanotubes.
    Unwin PR; Güell AG; Zhang G
    Acc Chem Res; 2016 Sep; 49(9):2041-8. PubMed ID: 27501067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CVD graphene electrochemistry: biologically relevant molecules.
    Brownson DA; Gómez-Mingot M; Banks CE
    Phys Chem Chem Phys; 2011 Dec; 13(45):20284-8. PubMed ID: 21989626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diffusion mechanism of lithium ion through basal plane of layered graphene.
    Yao F; Güneş F; Ta HQ; Lee SM; Chae SJ; Sheem KY; Cojocaru CS; Xie SS; Lee YH
    J Am Chem Soc; 2012 May; 134(20):8646-54. PubMed ID: 22545779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene oxide electrochemistry: the electrochemistry of graphene oxide modified electrodes reveals coverage dependent beneficial electrocatalysis.
    Brownson DAC; Smith GC; Banks CE
    R Soc Open Sci; 2017 Nov; 4(11):171128. PubMed ID: 29291099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemistry of Fe
    Zhang G; Tan SY; Patel AN; Unwin PR
    Phys Chem Chem Phys; 2016 Nov; 18(47):32387-32395. PubMed ID: 27858021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical oxidation of guanine: electrode reaction mechanism and tailoring carbon electrode surfaces to switch between adsorptive and diffusional responses.
    Li Q; Batchelor-McAuley C; Compton RG
    J Phys Chem B; 2010 Jun; 114(21):7423-8. PubMed ID: 20446746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 51.