BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1012 related articles for article (PubMed ID: 24337073)

  • 21. CVD graphene vs. highly ordered pyrolytic graphite for use in electroanalytical sensing.
    Brownson DA; Gorbachev RV; Haigh SJ; Banks CE
    Analyst; 2012 Feb; 137(4):833-9. PubMed ID: 22182964
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A green approach to the synthesis of graphene nanosheets.
    Guo HL; Wang XF; Qian QY; Wang FB; Xia XH
    ACS Nano; 2009 Sep; 3(9):2653-9. PubMed ID: 19691285
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pristine Graphene Electrode in Hydrogen Evolution Reaction.
    Xie A; Xuan N; Ba K; Sun Z
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4643-4648. PubMed ID: 28079359
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exploring the electrocatalytic sites of carbon nanotubes for NADH detection: an edge plane pyrolytic graphite electrode study.
    Banks CE; Compton RG
    Analyst; 2005 Sep; 130(9):1232-9. PubMed ID: 16096667
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrochemistry at highly oriented pyrolytic graphite (HOPG): lower limit for the kinetics of outer-sphere redox processes and general implications for electron transfer models.
    Zhang G; Cuharuc AS; Güell AG; Unwin PR
    Phys Chem Chem Phys; 2015 May; 17(17):11827-38. PubMed ID: 25869656
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Organic contamination of highly oriented pyrolytic graphite as studied by scanning electrochemical microscopy.
    Nioradze N; Chen R; Kurapati N; Khvataeva-Domanov A; Mabic S; Amemiya S
    Anal Chem; 2015 May; 87(9):4836-43. PubMed ID: 25843146
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrochemistry of individual monolayer graphene sheets.
    Li W; Tan C; Lowe MA; Abruña HD; Ralph DC
    ACS Nano; 2011 Mar; 5(3):2264-70. PubMed ID: 21332139
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detailed analysis of the electron-transfer properties of azurin adsorbed on graphite electrodes using DC and large-amplitude Fourier transformed AC voltammetry.
    Fleming BD; Zhang J; Elton D; Bond AM
    Anal Chem; 2007 Sep; 79(17):6515-26. PubMed ID: 17668927
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrochemical properties of honeycomb-like structured HFBI self-organized membranes on HOPG electrodes.
    Yamasaki R; Takatsuji Y; Lienemann M; Asakawa H; Fukuma T; Linder M; Haruyama T
    Colloids Surf B Biointerfaces; 2014 Nov; 123():803-8. PubMed ID: 25454670
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Polycrystallinity and stacking in CVD graphene.
    Tsen AW; Brown L; Havener RW; Park J
    Acc Chem Res; 2013 Oct; 46(10):2286-96. PubMed ID: 23135386
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pristine Basal- and Edge-Plane-Oriented Molybdenite MoS2 Exhibiting Highly Anisotropic Properties.
    Tan SM; Ambrosi A; Sofer Z; Huber Š; Sedmidubský D; Pumera M
    Chemistry; 2015 May; 21(19):7170-8. PubMed ID: 25821017
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reactivity of monolayer chemical vapor deposited graphene imperfections studied using scanning electrochemical microscopy.
    Tan C; Rodríguez-López J; Parks JJ; Ritzert NL; Ralph DC; Abruña HD
    ACS Nano; 2012 Apr; 6(4):3070-9. PubMed ID: 22424270
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electron transfer kinetics on mono- and multilayer graphene.
    Velický M; Bradley DF; Cooper AJ; Hill EW; Kinloch IA; Mishchenko A; Novoselov KS; Patten HV; Toth PS; Valota AT; Worrall SD; Dryfe RA
    ACS Nano; 2014 Oct; 8(10):10089-100. PubMed ID: 25290250
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improved heterogeneous electron transfer kinetics of fluorinated graphene derivatives.
    Boopathi S; Narayanan TN; Senthil Kumar S
    Nanoscale; 2014 Sep; 6(17):10140-6. PubMed ID: 25042554
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Anthraquinone monosulfonate adsorbed on graphite shows two very different rates of electron transfer: surface heterogeneity due to basal and edge plane sites.
    Neumann CC; Batchelor-McAuley C; Downing C; Compton RG
    Chemistry; 2011 Jun; 17(26):7320-6. PubMed ID: 21567488
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of edge orientation in kinetics of electrochemical intercalation of lithium-ion at graphite.
    Yamada Y; Miyazaki K; Abe T
    Langmuir; 2010 Sep; 26(18):14990-4. PubMed ID: 20715871
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultrafast Electron Transfer Kinetics of Graphene Grown by Chemical Vapor Deposition.
    Chen R; Nioradze N; Santhosh P; Li Z; Surwade SP; Shenoy GJ; Parobek DG; Kim MA; Liu H; Amemiya S
    Angew Chem Int Ed Engl; 2015 Dec; 54(50):15134-7. PubMed ID: 26563580
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Implementation of Electrochemically Synthesized Silver Nanocrystallites for the Preferential SERS Enhancement of Defect Modes on Thermally Etched Graphite Surfaces.
    Zoval JV; Biernacki PR; Penner RM
    Anal Chem; 1996 May; 68(9):1585-92. PubMed ID: 21619124
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Graphene electrochemistry: fabricating amperometric biosensors.
    Brownson DA; Banks CE
    Analyst; 2011 May; 136(10):2084-9. PubMed ID: 21461417
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Robust Electrografting on Self-Organized 3D Graphene Electrodes.
    Fortgang P; Tite T; Barnier V; Zehani N; Maddi C; Lagarde F; Loir AS; Jaffrezic-Renault N; Donnet C; Garrelie F; Chaix C
    ACS Appl Mater Interfaces; 2016 Jan; 8(2):1424-33. PubMed ID: 26710829
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 51.