BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 24337103)

  • 1. A universal ankle-foot prosthesis emulator for human locomotion experiments.
    Caputo JM; Collins SH
    J Biomech Eng; 2014 Mar; 136(3):035002. PubMed ID: 24337103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Ankle-Foot Prosthesis Emulator Capable of Modulating Center of Pressure.
    Chiu VL; Voloshina AS; Collins SH
    IEEE Trans Biomed Eng; 2020 Jan; 67(1):166-176. PubMed ID: 30969914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits.
    Au S; Berniker M; Herr H
    Neural Netw; 2008 May; 21(4):654-66. PubMed ID: 18499394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of push-off timing in a robotic ankle-foot prosthesis on the energetics and mechanics of walking.
    Malcolm P; Quesada RE; Caputo JM; Collins SH
    J Neuroeng Rehabil; 2015 Feb; 12():21. PubMed ID: 25889201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and control of a bio-inspired soft wearable robotic device for ankle-foot rehabilitation.
    Park YL; Chen BR; PĂ©rez-Arancibia NO; Young D; Stirling L; Wood RJ; Goldfield EC; Nagpal R
    Bioinspir Biomim; 2014 Mar; 9(1):016007. PubMed ID: 24434598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An experimental comparison of the relative benefits of work and torque assistance in ankle exoskeletons.
    Jackson RW; Collins SH
    J Appl Physiol (1985); 2015 Sep; 119(5):541-57. PubMed ID: 26159764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preliminary study of a robotic foot-ankle prosthesis with active alignment.
    LaPre AK; Wedge RD; Umberger BR; Sup FC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1299-1304. PubMed ID: 28814000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An efficient robotic tendon for gait assistance.
    Hollander KW; Ilg R; Sugar TG; Herring D
    J Biomech Eng; 2006 Oct; 128(5):788-91. PubMed ID: 16995768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a quasi-passive 3 DOFs ankle-foot wearable rehabilitation orthosis.
    Zhang C; Zhu Y; Fan J; Zhao J; Yu H
    Biomed Mater Eng; 2015; 26 Suppl 1():S647-54. PubMed ID: 26406060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robots in human biomechanics--a study on ankle push-off in walking.
    Renjewski D; Seyfarth A
    Bioinspir Biomim; 2012 Sep; 7(3):036005. PubMed ID: 22510333
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a mechatronic platform and validation of methods for estimating ankle stiffness during the stance phase of walking.
    Rouse EJ; Hargrove LJ; Perreault EJ; Peshkin MA; Kuiken TA
    J Biomech Eng; 2013 Aug; 135(8):81009. PubMed ID: 23719922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and Characterization of a Quasi-Passive Pneumatic Foot-Ankle Prosthesis.
    Lee JD; Mooney LM; Rouse EJ
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jul; 25(7):823-831. PubMed ID: 28463204
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and experimental evaluation of a lightweight, high-torque and compliant actuator for an active ankle foot orthosis.
    Moltedo M; Bacek T; Langlois K; Junius K; Vanderborght B; Lefeber D
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():283-288. PubMed ID: 28813832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Robotic cadaver testing of a new total ankle prosthesis model (German Ankle System).
    Richter M; Zech S; Westphal R; Klimesch Y; Gosling T
    Foot Ankle Int; 2007 Dec; 28(12):1276-86. PubMed ID: 18173992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Passive prosthetic ankle-foot mechanism for automatic adaptation to sloped surfaces.
    Nickel E; Sensinger J; Hansen A
    J Rehabil Res Dev; 2014; 51(5):803-14. PubMed ID: 25333672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design, Characterization, and Preliminary Assessment of a Two-Degree-of-Freedom Powered Ankle-Foot Prosthesis.
    Hsieh TH; Song H; Shu T; Qiao J; Yeon SH; Carney M; Mooney L; Duval JF; Herr H
    Biomimetics (Basel); 2024 Jan; 9(2):. PubMed ID: 38392122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Movement Performance of Human-Robot Cooperation Control Based on EMG-Driven Hill-Type and Proportional Models for an Ankle Power-Assist Exoskeleton Robot.
    Ao D; Song R; Gao J
    IEEE Trans Neural Syst Rehabil Eng; 2017 Aug; 25(8):1125-1134. PubMed ID: 27337719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An in vitro approach to the evaluation of foot-ankle kinematics: performance evaluation of a custom-built gait simulator.
    Peeters K; Natsakis T; Burg J; Spaepen P; Jonkers I; Dereymaeker G; Vander Sloten J
    Proc Inst Mech Eng H; 2013 Sep; 227(9):955-67. PubMed ID: 23736995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Humanoid robot Lola: design and walking control.
    Buschmann T; Lohmeier S; Ulbrich H
    J Physiol Paris; 2009; 103(3-5):141-8. PubMed ID: 19665558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanics of the ankle-foot system during stair ambulation: implications for design of advanced ankle-foot prostheses.
    Sinitski EH; Hansen AH; Wilken JM
    J Biomech; 2012 Feb; 45(3):588-94. PubMed ID: 22177669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.