These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 24337103)

  • 21. A lightweight robotic ankle prosthesis with non-backdrivable cam-based transmission.
    Lenzi T; Cempini M; Newkirk J; Hargrove LJ; Kuiken TA
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1142-1147. PubMed ID: 28813975
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An Ankle-Foot Prosthesis for Rock Climbing Augmentation.
    Rogers EA; Carney ME; Yeon SH; Clites TR; Solav D; Herr HM
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():41-51. PubMed ID: 33095704
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exotendons for assistance of human locomotion.
    van den Bogert AJ
    Biomed Eng Online; 2003 Oct; 2():17. PubMed ID: 14613503
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioinspired legged-robot based on large deformation of flexible skeleton.
    Mayyas M
    Bioinspir Biomim; 2014 Nov; 9(4):046013. PubMed ID: 25387137
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of a powered ankle-foot prosthetic system during walking.
    Ferris AE; Aldridge JM; Rábago CA; Wilken JM
    Arch Phys Med Rehabil; 2012 Nov; 93(11):1911-8. PubMed ID: 22732369
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A bio-robotic platform for integrating internal and external mechanics during muscle-powered swimming.
    Richards CT; Clemente CJ
    Bioinspir Biomim; 2012 Mar; 7(1):016010. PubMed ID: 22345392
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design and Validation of the Ankle Mimicking Prosthetic (AMP-) Foot 2.0.
    Cherelle P; Grosu V; Matthys A; Vanderborght B; Lefeber D
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jan; 22(1):138-48. PubMed ID: 24122571
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Within-socket myoelectric prediction of continuous ankle kinematics for control of a powered transtibial prosthesis.
    Farmer S; Silver-Thorn S; Voglewede P; Beardsley SA
    J Neural Eng; 2014 Oct; 11(5):056027. PubMed ID: 25246110
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanical performance of artificial pneumatic muscles to power an ankle-foot orthosis.
    Gordon KE; Sawicki GS; Ferris DP
    J Biomech; 2006; 39(10):1832-41. PubMed ID: 16023126
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design of a biped robot actuated by pneumatic artificial muscles.
    Liu Y; Zang X; Liu X; Wang L
    Biomed Mater Eng; 2015; 26 Suppl 1():S757-66. PubMed ID: 26406072
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Meniscal wear at a three-component total ankle prosthesis by a knee joint simulator.
    Affatato S; Leardini A; Leardini W; Giannini S; Viceconti M
    J Biomech; 2007; 40(8):1871-6. PubMed ID: 17014854
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The influence of sole wedges on frontal plane knee kinetics, in isolation and in combination with representative rigid and semi-rigid ankle-foot-orthoses.
    Schmalz T; Blumentritt S; Drewitz H; Freslier M
    Clin Biomech (Bristol, Avon); 2006 Jul; 21(6):631-9. PubMed ID: 16567026
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot.
    Onal CD; Rus D
    Bioinspir Biomim; 2013 Jun; 8(2):026003. PubMed ID: 23524383
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Control of a powered ankle-foot prosthesis based on a neuromuscular model.
    Eilenberg MF; Geyer H; Herr H
    IEEE Trans Neural Syst Rehabil Eng; 2010 Apr; 18(2):164-73. PubMed ID: 20071268
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Human-like compliant locomotion: state of the art of robotic implementations.
    Torricelli D; Gonzalez J; Weckx M; Jiménez-Fabián R; Vanderborght B; Sartori M; Dosen S; Farina D; Lefeber D; Pons JL
    Bioinspir Biomim; 2016 Aug; 11(5):051002. PubMed ID: 27545108
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Robot-Driven Computational Model for Estimating Passive Ankle Torque With Subject-Specific Adaptation.
    Zhang M; Meng W; Davies TC; Zhang Y; Xie SQ
    IEEE Trans Biomed Eng; 2016 Apr; 63(4):814-21. PubMed ID: 26340767
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Time-Varying Ankle Mechanical Impedance During Human Locomotion.
    Lee H; Hogan N
    IEEE Trans Neural Syst Rehabil Eng; 2015 Sep; 23(5):755-64. PubMed ID: 25137730
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Goal-directed multimodal locomotion through coupling between mechanical and attractor selection dynamics.
    Nurzaman SG; Yu X; Kim Y; Iida F
    Bioinspir Biomim; 2015 Mar; 10(2):025004. PubMed ID: 25811228
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computational modeling to predict mechanical function of joints: application to the lower leg with simulation of two cadaver studies.
    Liacouras PC; Wayne JS
    J Biomech Eng; 2007 Dec; 129(6):811-17. PubMed ID: 18067384
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bio-inspired step-climbing in a hexapod robot.
    Chou YC; Yu WS; Huang KJ; Lin PC
    Bioinspir Biomim; 2012 Sep; 7(3):036008. PubMed ID: 22549014
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.