These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 24337166)

  • 21. Piezoelectricity could predict sites of formation/resorption in bone remodelling and modelling.
    Fernández JR; García-Aznar JM; Martínez R
    J Theor Biol; 2012 Jan; 292():86-92. PubMed ID: 22001080
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Wolff's law-based continuum topology optimization method and its application in biomechanics].
    Cai K; Zhang H; Luo Y; Chen B
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr; 25(2):331-5. PubMed ID: 18610617
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Numerical estimation of bone density and elastic constants distribution in a human mandible.
    Reina JM; García-Aznar JM; Domínguez J; Doblaré M
    J Biomech; 2007; 40(4):828-36. PubMed ID: 16687149
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanical Stimuli in the Local In Vivo Environment in Bone: Computational Approaches Linking Organ-Scale Loads to Cellular Signals.
    Paul GR; Malhotra A; Müller R
    Curr Osteoporos Rep; 2018 Aug; 16(4):395-403. PubMed ID: 29915967
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A hypothetical mechanism of bone remodeling and modeling under electromagnetic loads.
    Qu C; Qin QH; Kang Y
    Biomaterials; 2006 Jul; 27(21):4050-7. PubMed ID: 16574223
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of two numerical approaches for bone remodelling.
    Chen G; Pettet G; Pearcy M; McElwain DL
    Med Eng Phys; 2007 Jan; 29(1):134-9. PubMed ID: 16458567
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prediction of shape and internal structure of the proximal femur using a modified level set method for structural topology optimisation.
    Bahari MK; Farahmand F; Rouhi G; Movahhedy MR
    Comput Methods Biomech Biomed Engin; 2012; 15(8):835-44. PubMed ID: 21547784
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A mechano-regulatory bone-healing model incorporating cell-phenotype specific activity.
    Isaksson H; van Donkelaar CC; Huiskes R; Ito K
    J Theor Biol; 2008 May; 252(2):230-46. PubMed ID: 18353374
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Weight loading young chicks inhibits bone elongation and promotes growth plate ossification and vascularization.
    Reich A; Jaffe N; Tong A; Lavelin I; Genina O; Pines M; Sklan D; Nussinovitch A; Monsonego-Ornan E
    J Appl Physiol (1985); 2005 Jun; 98(6):2381-9. PubMed ID: 15677737
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Trabecular bone remodelling simulation considering osteocytic response to fluid-induced shear stress.
    Adachi T; Kameo Y; Hojo M
    Philos Trans A Math Phys Eng Sci; 2010 Jun; 368(1920):2669-82. PubMed ID: 20439268
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Simulation of the rat tibial bone density changes with the finite element method].
    An MY; Ma AJ; Li YH; Wan YM
    Space Med Med Eng (Beijing); 2005 Feb; 18(1):55-7. PubMed ID: 15852552
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predicting bone remodeling around tissue- and bone-level dental implants used in reduced bone width.
    Eser A; Tonuk E; Akca K; Dard MM; Cehreli MC
    J Biomech; 2013 Sep; 46(13):2250-7. PubMed ID: 23876712
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional adaptation of cancellous bone in human proximal femur predicted by trabecular surface remodeling simulation toward uniform stress state.
    Tsubota K; Adachi T; Tomita Y
    J Biomech; 2002 Dec; 35(12):1541-51. PubMed ID: 12445607
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The aging of Wolff's "law": ontogeny and responses to mechanical loading in cortical bone.
    Pearson OM; Lieberman DE
    Am J Phys Anthropol; 2004; Suppl 39():63-99. PubMed ID: 15605390
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Orthotropic properties of cancellous bone modelled as parameterized cellular material.
    Kowalczyk P
    Comput Methods Biomech Biomed Engin; 2006 Jun; 9(3):135-47. PubMed ID: 16880164
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Numerical modeling of long bone adaptation due to mechanical loading: correlation with experiments.
    Chennimalai Kumar N; Dantzig JA; Jasiuk IM; Robling AG; Turner CH
    Ann Biomed Eng; 2010 Mar; 38(3):594-604. PubMed ID: 20013156
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Trabecular bone fracture healing simulation with finite element analysis and fuzzy logic.
    Shefelbine SJ; Augat P; Claes L; Simon U
    J Biomech; 2005 Dec; 38(12):2440-50. PubMed ID: 16214492
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of bone density alterations on strain patterns in the pelvis: application of a finite element model.
    Leung AS; Gordon LM; Skrinskas T; Szwedowski T; Whyne CM
    Proc Inst Mech Eng H; 2009 Nov; 223(8):965-79. PubMed ID: 20092094
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Finite element prediction of endosteal and periosteal bone remodelling in the turkey ulna: effect of remodelling signal and dead-zone definition.
    Taylor WR; Warner MD; Clift SE
    Proc Inst Mech Eng H; 2003; 217(5):349-56. PubMed ID: 14558647
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A bone remodelling model coupling micro-damage growth and repair by 3D BMU-activity.
    García-Aznar JM; Rueberg T; Doblare M
    Biomech Model Mechanobiol; 2005 Nov; 4(2-3):147-67. PubMed ID: 15942795
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.