These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 24337180)

  • 1. Subject-specific finite element modeling of the tibiofemoral joint based on CT, magnetic resonance imaging and dynamic stereo-radiography data in vivo.
    Carey RE; Zheng L; Aiyangar AK; Harner CD; Zhang X
    J Biomech Eng; 2014 Apr; 136(4):0410041-8. PubMed ID: 24337180
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo tibiofemoral skeletal kinematics and cartilage contact arthrokinematics during decline walking after isolated meniscectomy.
    Zheng L; Carey R; Thorhauer E; Tashman S; Harner C; Zhang X
    Med Eng Phys; 2018 Jan; 51():41-48. PubMed ID: 29122451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How tibiofemoral alignment and contact locations affect predictions of medial and lateral tibiofemoral contact forces.
    Lerner ZF; DeMers MS; Delp SL; Browning RC
    J Biomech; 2015 Feb; 48(4):644-650. PubMed ID: 25595425
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anterior Cruciate Ligament Reconstruction Affects Tibiofemoral Joint Congruency During Dynamic Functional Movement.
    Nagai K; Gale T; Irrgang JJ; Tashman S; Fu FH; Anderst W
    Am J Sports Med; 2018 Jun; 46(7):1566-1574. PubMed ID: 29613816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A finite element model of the human knee joint for the study of tibio-femoral contact.
    Donahue TL; Hull ML; Rashid MM; Jacobs CR
    J Biomech Eng; 2002 Jun; 124(3):273-80. PubMed ID: 12071261
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of a valgus unloader brace in the medial meniscectomized knee joint: a biomechanical study.
    Shriram D; Yamako G; Chosa E; Lee YHD; Subburaj K
    J Orthop Surg Res; 2019 Feb; 14(1):44. PubMed ID: 30755226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces.
    Gerus P; Sartori M; Besier TF; Fregly BJ; Delp SL; Banks SA; Pandy MG; D'Lima DD; Lloyd DG
    J Biomech; 2013 Nov; 46(16):2778-86. PubMed ID: 24074941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of bone inhomogeneity on tibiofemoral contact mechanics during physiological loading.
    Venäläinen MS; Mononen ME; Väänänen SP; Jurvelin JS; Töyräs J; Virén T; Korhonen RK
    J Biomech; 2016 May; 49(7):1111-1120. PubMed ID: 26965471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tibiofemoral contact points relative to flexion angle measured with MRI.
    Wretenberg P; Ramsey DK; Németh G
    Clin Biomech (Bristol, Avon); 2002 Jul; 17(6):477-85. PubMed ID: 12135550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and validation of a subject-specific moving-axis tibiofemoral joint model using MRI and EOS imaging during a quasi-static lunge.
    Dzialo CM; Pedersen PH; Simonsen CW; Jensen KK; de Zee M; Andersen MS
    J Biomech; 2018 Apr; 72():71-80. PubMed ID: 29567307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional tibiofemoral articular contact kinematics of a cruciate-retaining total knee arthroplasty.
    Li G; Suggs J; Hanson G; Durbhakula S; Johnson T; Freiberg A
    J Bone Joint Surg Am; 2006 Feb; 88(2):395-402. PubMed ID: 16452753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. American Society of Biomechanics Clinical Biomechanics Award 2013: tibiofemoral contact location changes associated with lateral heel wedging--a weight bearing MRI study.
    Barrance PJ; Gade V; Allen J; Cole JL
    Clin Biomech (Bristol, Avon); 2014 Nov; 29(9):997-1002. PubMed ID: 25280456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity of tibio-menisco-femoral joint contact behavior to variations in knee kinematics.
    Yao J; Salo AD; Lee J; Lerner AL
    J Biomech; 2008; 41(2):390-8. PubMed ID: 17950743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of isolated femur and tibia rotations on patella cartilage stress: a sensitivity analysis.
    Liao TC; Yin L; Powers CM
    Clin Biomech (Bristol, Avon); 2018 May; 54():125-131. PubMed ID: 29579721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational investigation of the time-dependent contact behaviour of the human tibiofemoral joint under body weight.
    Meng Q; Jin Z; Wilcox R; Fisher J
    Proc Inst Mech Eng H; 2014 Nov; 228(11):1193-207. PubMed ID: 25500864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo tibiofemoral contact analysis using 3D MRI-based knee models.
    DeFrate LE; Sun H; Gill TJ; Rubash HE; Li G
    J Biomech; 2004 Oct; 37(10):1499-504. PubMed ID: 15336924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The inaccuracy of surface-measured model-derived tibiofemoral kinematics.
    Li K; Zheng L; Tashman S; Zhang X
    J Biomech; 2012 Oct; 45(15):2719-23. PubMed ID: 22964018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrating dynamic stereo-radiography and surface-based motion data for subject-specific musculoskeletal dynamic modeling.
    Zheng L; Li K; Shetye S; Zhang X
    J Biomech; 2014 Sep; 47(12):3217-21. PubMed ID: 25169658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimating lumbar passive stiffness behaviour from subject-specific finite element models and in vivo 6DOF kinematics.
    Affolter C; Kedzierska J; Vielma T; Weisse B; Aiyangar A
    J Biomech; 2020 Mar; 102():109681. PubMed ID: 32151379
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tibiofemoral movement 4: changes of axial tibial rotation caused by forced rotation at the weight-bearing knee studied by RSA.
    Karrholm J; Brandsson S; Freeman MA
    J Bone Joint Surg Br; 2000 Nov; 82(8):1201-3. PubMed ID: 11132288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.