BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 24337222)

  • 1. Atmospheric methane removal by methane-oxidizing bacteria immobilized on porous building materials.
    Ganendra G; De Muynck W; Ho A; Hoefman S; De Vos P; Boeckx P; Boon N
    Appl Microbiol Biotechnol; 2014 Apr; 98(8):3791-800. PubMed ID: 24337222
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methane biofiltration using autoclaved aerated concrete as the carrier material.
    Ganendra G; Mercado-Garcia D; Hernandez-Sanabria E; Boeckx P; Ho A; Boon N
    Appl Microbiol Biotechnol; 2015 Sep; 99(17):7307-20. PubMed ID: 25967655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methane emission mitigation by methane-oxidizing bacteria immobilized on building materials.
    Ganendra G; De Muynck W; Ho A; Boon N
    Commun Agric Appl Biol Sci; 2013; 78(1):61-7. PubMed ID: 23875299
    [No Abstract]   [Full Text] [Related]  

  • 4. Improved methane removal in exhaust gas from biogas upgrading process using immobilized methane-oxidizing bacteria.
    Sun MT; Yang ZM; Fu SF; Fan XL; Guo RB
    Bioresour Technol; 2018 May; 256():201-207. PubMed ID: 29448156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation of methane by Methylomicrobium album and Methylocystis sp. in the presence of H2S and NH 3.
    Cáceres M; Gentina JC; Aroca G
    Biotechnol Lett; 2014 Jan; 36(1):69-74. PubMed ID: 24068504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Research progress of atmospheric methane oxidizers in soil].
    Cai Y; Jia Z
    Wei Sheng Wu Xue Bao; 2014 Aug; 54(8):841-53. PubMed ID: 25345015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved methane elimination by methane-oxidizing bacteria immobilized on modified oil shale semicoke.
    Sun MT; Yang ZM; Fan XL; Wang F; Guo RB; Xu DY
    Sci Total Environ; 2019 Mar; 655():915-923. PubMed ID: 30481718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Field-scale labelling and activity quantification of methane-oxidizing bacteria in a landfill-cover soil.
    Henneberger R; Chiri E; Blees J; Niemann H; Lehmann MF; Schroth MH
    FEMS Microbiol Ecol; 2013 Feb; 83(2):392-401. PubMed ID: 22928887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploration and enrichment of methane-oxidizing bacteria derived from a rice paddy field emitting highly concentrated methane.
    Yasuda S; Toyoda R; Agrawal S; Suenaga T; Riya S; Hori T; Lackner S; Hosomi M; Terada A
    J Biosci Bioeng; 2020 Sep; 130(3):311-318. PubMed ID: 32487498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abundance, activity, and community structure of pelagic methane-oxidizing bacteria in temperate lakes.
    Sundh I; Bastviken D; Tranvik LJ
    Appl Environ Microbiol; 2005 Nov; 71(11):6746-52. PubMed ID: 16269705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atmospheric methane oxidizers are present and active in Canadian high Arctic soils.
    Martineau C; Pan Y; Bodrossy L; Yergeau E; Whyte LG; Greer CW
    FEMS Microbiol Ecol; 2014 Aug; 89(2):257-69. PubMed ID: 24450397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elimination of methane in exhaust gas from biogas upgrading process by immobilized methane-oxidizing bacteria.
    Wu YM; Yang J; Fan XL; Fu SF; Sun MT; Guo RB
    Bioresour Technol; 2017 May; 231():124-128. PubMed ID: 28254343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection and classification of atmospheric methane oxidizing bacteria in soil.
    Bull ID; Parekh NR; Hall GH; Ineson P; Evershed RP
    Nature; 2000 May; 405(6783):175-8. PubMed ID: 10821271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selection of associated heterotrophs by methane-oxidizing bacteria at different copper concentrations.
    van der Ha D; Vanwonterghem I; Hoefman S; De Vos P; Boon N
    Antonie Van Leeuwenhoek; 2013 Mar; 103(3):527-37. PubMed ID: 23104073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Role of exogenous carbon dioxide in the metabolism of methane-oxidizing bacteria].
    Romanovskaia VA; Liudvichenko ES; Kryshtab TP; Zhukov VG; Sokolov IG
    Mikrobiologiia; 1980; 49(5):687-94. PubMed ID: 6777643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Niche separation within aerobic methanotrophic bacteria across lakes and its link to methane oxidation rates.
    Reis PCJ; Thottathil SD; Ruiz-González C; Prairie YT
    Environ Microbiol; 2020 Feb; 22(2):738-751. PubMed ID: 31769176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seasonal dynamics of the microbial methane filter in the water column of a eutrophic coastal basin.
    Venetz J; Żygadłowska OM; Dotsios N; Wallenius AJ; van Helmond NAGM; Lenstra WK; Klomp R; Slomp CP; Jetten MSM; Veraart AJ
    FEMS Microbiol Ecol; 2024 Feb; 100(3):. PubMed ID: 38281061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidation of methane in biotrickling filters inoculated with methanotrophic bacteria.
    Cáceres M; Dorado AD; Gentina JC; Aroca G
    Environ Sci Pollut Res Int; 2017 Nov; 24(33):25702-25712. PubMed ID: 27370536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methane and carbon dioxide emissions from Shan-Chu-Ku landfill site in northern Taiwan.
    Hegde U; Chang TC; Yang SS
    Chemosphere; 2003 Sep; 52(8):1275-85. PubMed ID: 12852979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.