These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 24337816)

  • 1. Laser induced fluorescence of biochemical for UV LIDAR application.
    Gupta L; Sharma RC; Razdan AK; Maini AK
    J Fluoresc; 2014 May; 24(3):709-11. PubMed ID: 24337816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical gas sensor (bio-sniffer) for ultrahigh-sensitive gaseous formaldehyde monitoring.
    Kudo H; Suzuki Y; Gessei T; Takahashi D; Arakawa T; Mitsubayashi K
    Biosens Bioelectron; 2010 Oct; 26(2):854-8. PubMed ID: 20810270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fiber-optic sorbitol biosensor based on NADH fluorescence detection toward rapid diagnosis of diabetic complications.
    Gessei T; Arakawa T; Kudo H; Mitsubayashi K
    Analyst; 2015 Sep; 140(18):6335-42. PubMed ID: 26244794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of biological warfare agents using ultra violet-laser induced fluorescence LIDAR.
    Joshi D; Kumar D; Maini AK; Sharma RC
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Aug; 112():446-56. PubMed ID: 23719340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescence rejection in resonance Raman spectroscopy using a picosecond-gated intensified charge-coupled device camera.
    Efremov EV; Buijs JB; Gooijer C; Ariese F
    Appl Spectrosc; 2007 Jun; 61(6):571-8. PubMed ID: 17650366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluorescence spectra and images of latent fingerprints excited with a tunable laser in the ultraviolet region.
    Akiba N; Saitoh N; Kuroki K
    J Forensic Sci; 2007 Sep; 52(5):1103-6. PubMed ID: 17767656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of laser excitation intensity on deep UV fluorescence detection in microchip electrophoresis.
    Schulze P; Ludwig M; Belder D
    Electrophoresis; 2008 Dec; 29(24):4894-9. PubMed ID: 19025868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic analysis of the autofluorescence from human bronchus using an ultraviolet laser diode.
    Kobayashi M; Shibuya K; Hoshino H; Fujisawa T
    J Biomed Opt; 2002 Oct; 7(4):603-8. PubMed ID: 12421127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Raman and Fluorescence Profiles Modifications of Muscular and Adipose Tissues Exposed to Low Energy X-ray Beams.
    Santos NR; Künzel R; Freitas MB; Levenhagen RS; Marques APA; Courrol LC
    Appl Spectrosc; 2021 Sep; 75(9):1124-1135. PubMed ID: 33464152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using shaped ultrafast laser pulses to detect enzyme binding.
    Tseng CH; Weinacht TC; Rhoades AE; Murray M; Pearson BJ
    Opt Express; 2011 Nov; 19(24):24638-46. PubMed ID: 22109492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold nanoparticles: catalyst for the oxidation of NADH to NAD(+).
    Huang X; El-Sayed IH; Yi X; El-Sayed MA
    J Photochem Photobiol B; 2005 Nov; 81(2):76-83. PubMed ID: 16125965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remote Raman and fluorescence studies of mineral samples.
    Bozlee BJ; Misra AK; Sharma SK; Ingram M
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Aug; 61(10):2342-8. PubMed ID: 16029855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using the laser-induced fluorescence spectroscopy in the differentiation between normal and neoplastichuman breast tissue.
    Hage R; Galhanone PR; Zângaro RA; Rodrigues KC; Pacheco MT; Martin AA; Netto MM; Soares FA; da Cunha IW
    Lasers Med Sci; 2003; 18(3):171-6. PubMed ID: 14505202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Laser induced fluorescence spectroscopy analysis of kidney tissues: A pilot study for the identification of renal cell carcinoma.
    Pavithran M S; Lukose J; Barik BK; Periasami A; Kartha VB; Chawla A; Chidangil S
    J Biophotonics; 2023 Nov; 16(11):e202300021. PubMed ID: 37589180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser temperature-jump spectroscopy of intrinsically disordered proteins.
    Hagen SJ
    Methods Mol Biol; 2012; 896():267-81. PubMed ID: 22821531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Autofluorescence lifetime imaging of cultivated cells using a UV picosecond laser diode.
    Schneckenburger H; Wagner M; Weber P; Strauss WS; Sailer R
    J Fluoresc; 2004 Sep; 14(5):649-54. PubMed ID: 15617271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultraviolet fluorescence spectra of fingerprints.
    Saitoh N; Akiba N
    ScientificWorldJournal; 2005 May; 5():355-66. PubMed ID: 15870848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 224 nm Deep-UV laser for native fluorescence, a new opportunity for biomolecules detection.
    Bonnin C; Matoga M; Garnier N; Debroche C; de Vandière B; Chaminade P
    J Chromatogr A; 2007 Jul; 1156(1-2):94-100. PubMed ID: 17174961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Study on multi-photon excited fluorescence combined with capillary electrophoresis].
    Sun YX; Zhu F; Ma WY
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Apr; 25(4):502-5. PubMed ID: 16097670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting Kerogen as a Biosignature Using Colocated UV Time-Gated Raman and Fluorescence Spectroscopy.
    Shkolyar S; Eshelman EJ; Farmer JD; Hamilton D; Daly MG; Youngbull C
    Astrobiology; 2018 Apr; 18(4):431-453. PubMed ID: 29624103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.