BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

519 related articles for article (PubMed ID: 24337988)

  • 1. Mapping NAD(+) metabolism in the brain of ageing Wistar rats: potential targets for influencing brain senescence.
    Braidy N; Poljak A; Grant R; Jayasena T; Mansour H; Chan-Ling T; Guillemin GJ; Smythe G; Sachdev P
    Biogerontology; 2014 Apr; 15(2):177-98. PubMed ID: 24337988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Age related changes in NAD+ metabolism oxidative stress and Sirt1 activity in wistar rats.
    Braidy N; Guillemin GJ; Mansour H; Chan-Ling T; Poljak A; Grant R
    PLoS One; 2011 Apr; 6(4):e19194. PubMed ID: 21541336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly(ADP-ribosyl)ation enhancement in brain cell nuclei is associated with diabetic neuropathy.
    Kuchmerovska T; Shymanskyy I; Donchenko G; Kuchmerovskyy M; Pakirbaieva L; Klimenko A
    J Diabetes Complications; 2004; 18(4):198-204. PubMed ID: 15207836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CD38 inhibition by apigenin ameliorates mitochondrial oxidative stress through restoration of the intracellular NAD
    Ogura Y; Kitada M; Xu J; Monno I; Koya D
    Aging (Albany NY); 2020 Jun; 12(12):11325-11336. PubMed ID: 32507768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Misregulation of poly(ADP-ribose) polymerase-1 activity and cell type-specific loss of poly(ADP-ribose) synthesis in the cerebellum of aged rats.
    Malanga M; Romano M; Ferone A; Petrella A; Monti G; Jones R; Limatola E; Farina B
    J Neurochem; 2005 May; 93(4):1000-9. PubMed ID: 15857403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CD38-dependent ADP-ribosyl cyclase activity in developing and adult mouse brain.
    Ceni C; Pochon N; Brun V; Muller-Steffner H; Andrieux A; Grunwald D; Schuber F; De Waard M; Lund F; Villaz M; Moutin MJ
    Biochem J; 2003 Feb; 370(Pt 1):175-83. PubMed ID: 12403647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Age-associated changes in oxidative stress and NAD+ metabolism in human tissue.
    Massudi H; Grant R; Braidy N; Guest J; Farnsworth B; Guillemin GJ
    PLoS One; 2012; 7(7):e42357. PubMed ID: 22848760
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of SIRT 1 mediated NAD dependent deacetylation: a novel role for the multifunctional enzyme CD38.
    Aksoy P; Escande C; White TA; Thompson M; Soares S; Benech JC; Chini EN
    Biochem Biophys Res Commun; 2006 Oct; 349(1):353-9. PubMed ID: 16935261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NAD and the aging process: Role in life, death and everything in between.
    Chini CCS; Tarragó MG; Chini EN
    Mol Cell Endocrinol; 2017 Nov; 455():62-74. PubMed ID: 27825999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The CD38-independent ADP-ribosyl cyclase from mouse brain synaptosomes: a comparative study of neonate and adult brain.
    Ceni C; Pochon N; Villaz M; Muller-Steffner H; Schuber F; Baratier J; De Waard M; Ronjat M; Moutin MJ
    Biochem J; 2006 Apr; 395(2):417-26. PubMed ID: 16411897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondria, Oxidative Stress and the Kynurenine System, with a Focus on Ageing and Neuroprotection.
    Sas K; Szabó E; Vécsei L
    Molecules; 2018 Jan; 23(1):. PubMed ID: 29342113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differentiation-Associated Downregulation of Poly(ADP-Ribose) Polymerase-1 Expression in Myoblasts Serves to Increase Their Resistance to Oxidative Stress.
    Oláh G; Szczesny B; Brunyánszki A; López-García IA; Gerö D; Radák Z; Szabo C
    PLoS One; 2015; 10(7):e0134227. PubMed ID: 26218895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced ADP-ribosylation and its diminution by lipoamide after ischemia-reperfusion in perfused rat heart.
    Szabados E; Fischer GM; Gallyas F; Kispal G; Sumegi B
    Free Radic Biol Med; 1999 Nov; 27(9-10):1103-13. PubMed ID: 10569643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NAD and ADP-ribose metabolism in mitochondria.
    Dölle C; Rack JG; Ziegler M
    FEBS J; 2013 Aug; 280(15):3530-41. PubMed ID: 23617329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly(ADP-ribose) polymerase-1 protects neurons against apoptosis induced by oxidative stress.
    Diaz-Hernandez JI; Moncada S; Bolaños JP; Almeida A
    Cell Death Differ; 2007 Jun; 14(6):1211-21. PubMed ID: 17347665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of dietary niacin intake and the adenosine-5'-diphosphate-ribosyl cyclase enzyme CD38 in spatial learning ability: is cyclic adenosine diphosphate ribose the link between diet and behaviour?
    Young GS; Kirkland JB
    Nutr Res Rev; 2008 Jun; 21(1):42-55. PubMed ID: 19079853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ex vivo supplementation with nicotinic acid enhances cellular poly(ADP-ribosyl)ation and improves cell viability in human peripheral blood mononuclear cells.
    Weidele K; Kunzmann A; Schmitz M; Beneke S; Bürkle A
    Biochem Pharmacol; 2010 Oct; 80(7):1103-12. PubMed ID: 20599792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intra-mitochondrial poly(ADP-ribosyl)ation: potential role for alpha-ketoglutarate dehydrogenase.
    Pankotai E; Lacza Z; Murányi M; Szabó C
    Mitochondrion; 2009 Apr; 9(2):159-64. PubMed ID: 19460292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implications of NAD
    Kang BE; Choi JY; Stein S; Ryu D
    Eur J Clin Invest; 2020 Oct; 50(10):e13334. PubMed ID: 32594513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CD38 Knockout Mice Show Significant Protection Against Ischemic Brain Damage Despite High Level Poly-ADP-Ribosylation.
    Long A; Park JH; Klimova N; Fowler C; Loane DJ; Kristian T
    Neurochem Res; 2017 Jan; 42(1):283-293. PubMed ID: 27518087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.