BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 24338187)

  • 1. The biology of zinc transport in mammary epithelial cells: implications for mammary gland development, lactation, and involution.
    McCormick NH; Hennigar SR; Kiselyov K; Kelleher SL
    J Mammary Gland Biol Neoplasia; 2014 Mar; 19(1):59-71. PubMed ID: 24338187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping the zinc-transporting system in mammary cells: molecular analysis reveals a phenotype-dependent zinc-transporting network during lactation.
    Kelleher SL; Velasquez V; Croxford TP; McCormick NH; Lopez V; MacDavid J
    J Cell Physiol; 2012 Apr; 227(4):1761-70. PubMed ID: 21702047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Essential Role for Zinc Transporter 2 (ZnT2)-mediated Zinc Transport in Mammary Gland Development and Function during Lactation.
    Lee S; Hennigar SR; Alam S; Nishida K; Kelleher SL
    J Biol Chem; 2015 May; 290(21):13064-78. PubMed ID: 25851903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zn transporter levels and localization change throughout lactation in rat mammary gland and are regulated by Zn in mammary cells.
    Kelleher SL; Lönnerdal B
    J Nutr; 2003 Nov; 133(11):3378-85. PubMed ID: 14608047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ZnT2 is a critical mediator of lysosomal-mediated cell death during early mammary gland involution.
    Hennigar SR; Seo YA; Sharma S; Soybel DI; Kelleher SL
    Sci Rep; 2015 Jan; 5():8033. PubMed ID: 25620235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zip3 (Slc39a3) functions in zinc reuptake from the alveolar lumen in lactating mammary gland.
    Kelleher SL; Lopez V; Lönnerdal B; Dufner-Beattie J; Andrews GK
    Am J Physiol Regul Integr Comp Physiol; 2009 Jul; 297(1):R194-201. PubMed ID: 19458277
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid transport in the lactating mammary gland.
    McManaman JL
    J Mammary Gland Biol Neoplasia; 2014 Mar; 19(1):35-42. PubMed ID: 24567110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zip3 plays a major role in zinc uptake into mammary epithelial cells and is regulated by prolactin.
    Kelleher SL; Lönnerdal B
    Am J Physiol Cell Physiol; 2005 May; 288(5):C1042-7. PubMed ID: 15634741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ZnT2 is critical for lysosome acidification and biogenesis during mammary gland involution.
    Rivera OC; Hennigar SR; Kelleher SL
    Am J Physiol Regul Integr Comp Physiol; 2018 Aug; 315(2):R323-R335. PubMed ID: 29718697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zinc transporters in the rat mammary gland respond to marginal zinc and vitamin A intakes during lactation.
    Kelleher SL; Lönnerdal B
    J Nutr; 2002 Nov; 132(11):3280-5. PubMed ID: 12421840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ZnT4 (SLC30A4)-null ("lethal milk") mice have defects in mammary gland secretion and hallmarks of precocious involution during lactation.
    McCormick NH; Lee S; Hennigar SR; Kelleher SL
    Am J Physiol Regul Integr Comp Physiol; 2016 Jan; 310(1):R33-40. PubMed ID: 26538236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trace element transport in the mammary gland.
    Lönnerdal B
    Annu Rev Nutr; 2007; 27():165-77. PubMed ID: 17506666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular regulation of lactation: The complex and requisite roles for zinc.
    Lee S; Kelleher SL
    Arch Biochem Biophys; 2016 Dec; 611():86-92. PubMed ID: 27059852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted expression of GLI1 in the mammary gland disrupts pregnancy-induced maturation and causes lactation failure.
    Fiaschi M; Rozell B; Bergström A; Toftgård R; Kleman MI
    J Biol Chem; 2007 Dec; 282(49):36090-101. PubMed ID: 17928300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. X-ray fluorescence microscopy reveals accumulation and secretion of discrete intracellular zinc pools in the lactating mouse mammary gland.
    McCormick N; Velasquez V; Finney L; Vogt S; Kelleher SL
    PLoS One; 2010 Jun; 5(6):e11078. PubMed ID: 20552032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Apoptosis and autophagy in involuting bovine mammary gland.
    Zarzynska J; Motyl T
    J Physiol Pharmacol; 2008 Dec; 59 Suppl 9():275-88. PubMed ID: 19261986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression, localization, and functional model of cholesterol transporters in lactating and nonlactating mammary tissues of murine, bovine, and human origin.
    Mani O; Körner M; Sorensen MT; Sejrsen K; Wotzkow C; Ontsouka CE; Friis RR; Bruckmaier RM; Albrecht C
    Am J Physiol Regul Integr Comp Physiol; 2010 Aug; 299(2):R642-54. PubMed ID: 20445153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. STAT signaling in mammary gland differentiation, cell survival and tumorigenesis.
    Haricharan S; Li Y
    Mol Cell Endocrinol; 2014 Jan; 382(1):560-569. PubMed ID: 23541951
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organelles coordinate milk production and secretion during lactation: Insights into mammary pathologies.
    Dai W; White R; Liu J; Liu H
    Prog Lipid Res; 2022 Apr; 86():101159. PubMed ID: 35276245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression and localisation of oestrogen and progesterone receptors in the bovine mammary gland during development, function and involution.
    Schams D; Kohlenberg S; Amselgruber W; Berisha B; Pfaffl MW; Sinowatz F
    J Endocrinol; 2003 May; 177(2):305-17. PubMed ID: 12740019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.