BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 24338403)

  • 1. Differentiation of neonatal dorsal root ganglion-derived neural stem cells into oligodendrocytes after intrathecal transplantation into a cauda equina lesion model.
    Fu ZY; Shi JG; Liu N; Jia LS; Yuan W; Wang Y
    Genet Mol Res; 2013 Dec; 12(4):6092-102. PubMed ID: 24338403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transplantation of neural stem cells encapsulated in hydrogels improve functional recovery in a cauda equina lesion model.
    Fu Z; Wang H; Wu Y; Zhu T
    Biosci Trends; 2020 Nov; 14(5):360-367. PubMed ID: 33100289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glial phosphorylated p38 MAP kinase mediates pain in a rat model of lumbar disc herniation and induces motor dysfunction in a rat model of lumbar spinal canal stenosis.
    Ito T; Ohtori S; Inoue G; Koshi T; Doya H; Ozawa T; Saito T; Moriya H; Takahashi K
    Spine (Phila Pa 1976); 2007 Jan; 32(2):159-67. PubMed ID: 17224809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of Nogo-A in dorsal root ganglion in rats with cauda equina injury.
    Sun X; Kong Q; Sun K; Huan L; Xu X; Sun J; Shi J
    Biochem Biophys Res Commun; 2020 Jun; 527(1):131-137. PubMed ID: 32446356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental spinal stenosis: relationship between degree of cauda equina compression, neuropathology, and pain.
    Sekiguchi M; Kikuchi S; Myers RR
    Spine (Phila Pa 1976); 2004 May; 29(10):1105-11. PubMed ID: 15131438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forced Runx1 expression in human neural stem/progenitor cells transplanted to the rat dorsal root ganglion cavity results in extensive axonal growth specifically from spinal cord-derived neurospheres.
    König N; Åkesson E; Telorack M; Vasylovska S; Ngamjariyawat A; Sundström E; Oster A; Trolle C; Berens C; Aldskogius H; Seiger Å; Kozlova EN
    Stem Cells Dev; 2011 Nov; 20(11):1847-57. PubMed ID: 21322790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cauda equina syndrome (CES) from lumbar disc herniations.
    Olivero WC; Wang H; Hanigan WC; Henderson JP; Tracy PT; Elwood PW; Lister JR; Lyle L
    J Spinal Disord Tech; 2009 May; 22(3):202-6. PubMed ID: 19412023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuroprotective Effects of Valproic Acid in a Rat Model of Cauda Equina Injury.
    Kong QJ; Wang Y; Liu Y; Sun JC; Xu XM; Sun XF; Shi JG
    World Neurosurg; 2017 Dec; 108():128-136. PubMed ID: 28867325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cauda equina syndrome: a comprehensive review.
    Gitelman A; Hishmeh S; Morelli BN; Joseph SA; Casden A; Kuflik P; Neuwirth M; Stephen M
    Am J Orthop (Belle Mead NJ); 2008 Nov; 37(11):556-62. PubMed ID: 19104682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of Tubastatin A on the Functional Recovery of Cauda Equina Injury in Rats.
    Fu Z; Kong Q; Wu Y; Hu X; Shi J
    World Neurosurg; 2018 Jun; 114():e35-e41. PubMed ID: 29408594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Brain injury activates microglia that induce neural stem cell proliferation ex vivo and promote differentiation of neurosphere-derived cells into neurons and oligodendrocytes.
    Deierborg T; Roybon L; Inacio AR; Pesic J; Brundin P
    Neuroscience; 2010 Dec; 171(4):1386-96. PubMed ID: 20883748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relationship between the duration of acute cauda equina compression and functional outcomes in a rat model.
    Glennie RA; Urquhart JC; Staudt MD; Lawendy AR; Gurr KR; Bailey CS
    Spine (Phila Pa 1976); 2014 Sep; 39(19):E1123-31. PubMed ID: 24979273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. miR-124 regulates neural stem cells in the treatment of spinal cord injury.
    Xu W; Li P; Qin K; Wang X; Jiang X
    Neurosci Lett; 2012 Oct; 529(1):12-7. PubMed ID: 22999930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic effect of neural stem cells and olfactory ensheathing cells on repair of adult rat spinal cord injury.
    Wang G; Ao Q; Gong K; Zuo H; Gong Y; Zhang X
    Cell Transplant; 2010; 19(10):1325-37. PubMed ID: 20447345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cauda equina syndrome.
    Orendácová J; Cízková D; Kafka J; Lukácová N; Marsala M; Sulla I; Marsala J; Katsube N
    Prog Neurobiol; 2001 Aug; 64(6):613-37. PubMed ID: 11311464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inflammatory hypertrophic cauda equina following intrathecal neural stem cell injection.
    Hurst RW; Bosch EP; Morris JM; Dyck PJ; Reeves RK
    Muscle Nerve; 2013 Nov; 48(5):831-5. PubMed ID: 23740462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional recovery after human umbilical cord blood cells transplantation with brain-derived neutrophic factor into the spinal cord injured rat.
    Kuh SU; Cho YE; Yoon DH; Kim KN; Ha Y
    Acta Neurochir (Wien); 2005 Sep; 147(9):985-92; discussion 992. PubMed ID: 16010451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transplantation of embryonic spinal cord-derived neurospheres support growth of supraspinal projections and functional recovery after spinal cord injury in the neonatal rat.
    Nakamura M; Okano H; Toyama Y; Dai HN; Finn TP; Bregman BS
    J Neurosci Res; 2005 Aug; 81(4):457-68. PubMed ID: 15968644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contralateral neuropathic pain and neuropathology in dorsal root ganglion and spinal cord following hemilateral nerve injury in rats.
    Hatashita S; Sekiguchi M; Kobayashi H; Konno S; Kikuchi S
    Spine (Phila Pa 1976); 2008 May; 33(12):1344-51. PubMed ID: 18496347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rescue and regeneration of injured peripheral nerve axons by intrathecal insulin.
    Toth C; Brussee V; Martinez JA; McDonald D; Cunningham FA; Zochodne DW
    Neuroscience; 2006 May; 139(2):429-49. PubMed ID: 16529870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.