These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 24338407)
21. Microperimetric correlations of autofluorescence and optical coherence tomography imaging in dry age-related macular degeneration. Querques L; Querques G; Forte R; Souied EH Am J Ophthalmol; 2012 Jun; 153(6):1110-5. PubMed ID: 22321805 [TBL] [Abstract][Full Text] [Related]
22. Fundus autofluorescence and fundus perimetry in the junctional zone of geographic atrophy in patients with age-related macular degeneration. Schmitz-Valckenberg S; Bültmann S; Dreyhaupt J; Bindewald A; Holz FG; Rohrschneider K Invest Ophthalmol Vis Sci; 2004 Dec; 45(12):4470-6. PubMed ID: 15557456 [TBL] [Abstract][Full Text] [Related]
23. Five-year follow-up of fundus autofluorescence and retinal sensitivity in the fellow eye in exudative age-related macular degeneration in Japan. Shinojima A; Sawa M; Mori R; Sekiryu T; Oshima Y; Kato A; Hara C; Saito M; Sugano Y; Ashikari M; Hirano Y; Asato H; Nakamura M; Matsuno K; Kuno N; Kimura E; Nishiyama T; Yuzawa M; Ishibashi T; Ogura Y; Iida T; Gomi F; Yasukawa T PLoS One; 2020; 15(3):e0229694. PubMed ID: 32142523 [TBL] [Abstract][Full Text] [Related]
24. Retinal pigment epithelial cell loss assessed by fundus autofluorescence imaging in neovascular age-related macular degeneration. Kumar N; Mrejen S; Fung AT; Marsiglia M; Loh BK; Spaide RF Ophthalmology; 2013 Feb; 120(2):334-41. PubMed ID: 23137630 [TBL] [Abstract][Full Text] [Related]
25. Fundus autofluorescence and fate of glycoxidized particles injected into subretinal space in rabbit age-related macular degeneration model. Hirata M; Yasukawa T; Wiedemann P; Kimura E; Kunou N; Eichler W; Takase A; Sato R; Ogura Y Graefes Arch Clin Exp Ophthalmol; 2009 Jul; 247(7):929-37. PubMed ID: 19330346 [TBL] [Abstract][Full Text] [Related]
26. Fundus Autofluorescence in Age-related Macular Degeneration. Ly A; Nivison-Smith L; Assaad N; Kalloniatis M Optom Vis Sci; 2017 Feb; 94(2):246-259. PubMed ID: 27668639 [TBL] [Abstract][Full Text] [Related]
27. Fundus near infrared fluorescence correlates with fundus near infrared reflectance. Weinberger AW; Lappas A; Kirschkamp T; Mazinani BA; Huth JK; Mohammadi B; Walter P Invest Ophthalmol Vis Sci; 2006 Jul; 47(7):3098-108. PubMed ID: 16799056 [TBL] [Abstract][Full Text] [Related]
28. Central serous chorioretinopathy fundus autofluorescence comparison with two different confocal scanning laser ophthalmoscopes. Nam KT; Yun CM; Kim JT; Yang KS; Kim HJ; Kim SW; Oh J; Huh K Graefes Arch Clin Exp Ophthalmol; 2015 Dec; 253(12):2121-7. PubMed ID: 25690981 [TBL] [Abstract][Full Text] [Related]
29. Fundus autofluorescence patterns in primary intraocular lymphoma. Casady M; Faia L; Nazemzadeh M; Nussenblatt R; Chan CC; Sen HN Retina; 2014 Feb; 34(2):366-72. PubMed ID: 23958842 [TBL] [Abstract][Full Text] [Related]
32. Correlation of fundus autofluorescence with fluorescein and indocyanine green angiography in choroidal melanocytic lesions. Gündüz K; Pulido JS; Pulido JE; Link T Retina; 2008 Oct; 28(9):1257-64. PubMed ID: 18626422 [TBL] [Abstract][Full Text] [Related]
33. A systematic comparison of spectral-domain optical coherence tomography and fundus autofluorescence in patients with geographic atrophy. Sayegh RG; Simader C; Scheschy U; Montuoro A; Kiss C; Sacu S; Kreil DP; Prünte C; Schmidt-Erfurth U Ophthalmology; 2011 Sep; 118(9):1844-51. PubMed ID: 21496928 [TBL] [Abstract][Full Text] [Related]
34. Precursors of type 3 neovascularization: a multimodal imaging analysis. Querques G; Querques L; Forte R; Massamba N; Blanco R; Souied EH Retina; 2013 Jun; 33(6):1241-8. PubMed ID: 23508076 [TBL] [Abstract][Full Text] [Related]
35. Noninvasive investigation of deep vascular pathologies of exudative macular diseases by high-penetration optical coherence angiography. Hong YJ; Miura M; Makita S; Ju MJ; Lee BH; Iwasaki T; Yasuno Y Invest Ophthalmol Vis Sci; 2013 May; 54(5):3621-31. PubMed ID: 23633664 [TBL] [Abstract][Full Text] [Related]
36. Thinner choroid and greater drusen extent in retinal angiomatous proliferation than in typical exudative age-related macular degeneration. Kim JH; Kim JR; Kang SW; Kim SJ; Ha HS Am J Ophthalmol; 2013 Apr; 155(4):743-9, 749.e1-2. PubMed ID: 23317655 [TBL] [Abstract][Full Text] [Related]
37. Comparison of features on SD-OCT between acute central serous chorioretinopathy and exudative age-related macular degeneration. Ahn SJ; Kim TW; Huh JW; Yu HG; Chung H Ophthalmic Surg Lasers Imaging; 2012; 43(5):374-82. PubMed ID: 22767337 [TBL] [Abstract][Full Text] [Related]
38. Segmentation of the geographic atrophy in spectral-domain optical coherence tomography and fundus autofluorescence images. Hu Z; Medioni GG; Hernandez M; Hariri A; Wu X; Sadda SR Invest Ophthalmol Vis Sci; 2013 Dec; 54(13):8375-83. PubMed ID: 24265015 [TBL] [Abstract][Full Text] [Related]
39. Quantification of retinal pigment epithelium tear area in age-related macular degeneration. Clemens CR; Alten F; Baumgart C; Heiduschka P; Eter N Retina; 2014 Jan; 34(1):24-31. PubMed ID: 23743641 [TBL] [Abstract][Full Text] [Related]
40. Classification of fundus autofluorescence patterns in early age-related macular disease. Bindewald A; Bird AC; Dandekar SS; Dolar-Szczasny J; Dreyhaupt J; Fitzke FW; Einbock W; Holz FG; Jorzik JJ; Keilhauer C; Lois N; Mlynski J; Pauleikhoff D; Staurenghi G; Wolf S Invest Ophthalmol Vis Sci; 2005 Sep; 46(9):3309-14. PubMed ID: 16123434 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]