These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

546 related articles for article (PubMed ID: 24338697)

  • 21. High-Performance Electroactive Polymer Actuators Based on Ultrathick Ionic Polymer-Metal Composites with Nanodispersed Metal Electrodes.
    Wang HS; Cho J; Song DS; Jang JH; Jho JY; Park JH
    ACS Appl Mater Interfaces; 2017 Jul; 9(26):21998-22005. PubMed ID: 28593763
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-performance hybrid (electrostatic double-layer and faradaic capacitor-based) polymer actuators incorporating nickel oxide and vapor-grown carbon nanofibers.
    Terasawa N; Asaka K
    Langmuir; 2014 Dec; 30(47):14343-51. PubMed ID: 25354668
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Developing polymer composite materials: carbon nanotubes or graphene?
    Sun X; Sun H; Li H; Peng H
    Adv Mater; 2013 Oct; 25(37):5153-76. PubMed ID: 23813859
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-performance, low-voltage, and easy-operable bending actuator based on aligned carbon nanotube/polymer composites.
    Chen L; Liu C; Liu K; Meng C; Hu C; Wang J; Fan S
    ACS Nano; 2011 Mar; 5(3):1588-93. PubMed ID: 21309550
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carbon Nanotubes, Graphene, and Carbon Dots as Electrochemical Biosensing Composites.
    Pandey RR; Chusuei CC
    Molecules; 2021 Nov; 26(21):. PubMed ID: 34771082
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electromechanical actuator with controllable motion, fast response rate, and high-frequency resonance based on graphene and polydiacetylene.
    Liang J; Huang L; Li N; Huang Y; Wu Y; Fang S; Oh J; Kozlov M; Ma Y; Li F; Baughman R; Chen Y
    ACS Nano; 2012 May; 6(5):4508-19. PubMed ID: 22512356
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An electrochemical daunorubicin sensor based on the use of platinum nanoparticles loaded onto a nanocomposite prepared from nitrogen decorated reduced graphene oxide and single-walled carbon nanotubes.
    Kong FY; Li RF; Yao L; Wang ZX; Lv WX; Wang W
    Mikrochim Acta; 2019 May; 186(5):321. PubMed ID: 31049702
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Composite of Cu metal nanoparticles-multiwall carbon nanotubes-reduced graphene oxide as a novel and high performance platform of the electrochemical sensor for simultaneous determination of nitrite and nitrate.
    Bagheri H; Hajian A; Rezaei M; Shirzadmehr A
    J Hazard Mater; 2017 Feb; 324(Pt B):762-772. PubMed ID: 27894754
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effects of ionic liquid on the electrochemical sensing performance of graphene- and carbon nanotube-based electrodes.
    Wang CH; Wu CH; Wu JW; Lee MT; Chang JK; Ger MD; Sun CL
    Analyst; 2013 Jan; 138(2):576-82. PubMed ID: 23172364
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fully handwritten electrodes on paper substrate using rollerball pen with silver nanoparticle ink, marker pen with carbon nanotube ink and graphite pencil.
    Ferreira de Oliveira AE; César Pereira A; Ferreira LF
    Anal Methods; 2022 May; 14(19):1880-1888. PubMed ID: 35506547
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Newton Output Blocking Force under Low-Voltage Stimulation for Carbon Nanotube-Electroactive Polymer Composite Artificial Muscles.
    Chen IP; Yang MC; Yang CH; Zhong DX; Hsu MC; Chen Y
    ACS Appl Mater Interfaces; 2017 Feb; 9(6):5550-5555. PubMed ID: 28107622
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density.
    Cheng Q; Tang J; Ma J; Zhang H; Shinya N; Qin LC
    Phys Chem Chem Phys; 2011 Oct; 13(39):17615-24. PubMed ID: 21887427
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reverse adhesion of a gecko-inspired synthetic adhesive switched by an ion-exchange polymer-metal composite actuator.
    Guo DJ; Liu R; Cheng Y; Zhang H; Zhou LM; Fang SM; Elliott WH; Tan W
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5480-7. PubMed ID: 25676143
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A review on robotic fish enabled by ionic polymer-metal composite artificial muscles.
    Chen Z
    Robotics Biomim; 2017; 4(1):24. PubMed ID: 29264109
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Large-Deformation Curling Actuators Based on Carbon Nanotube Composite: Advanced-Structure Design and Biomimetic Application.
    Chen L; Weng M; Zhou Z; Zhou Y; Zhang L; Li J; Huang Z; Zhang W; Liu C; Fan S
    ACS Nano; 2015 Dec; 9(12):12189-96. PubMed ID: 26512734
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Carbon-based electrochemical capacitors.
    Ghosh A; Lee YH
    ChemSusChem; 2012 Mar; 5(3):480-99. PubMed ID: 22389329
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High Electromechanical Response of Ionic Polymer Actuators with Controlled-Morphology Aligned Carbon Nanotube/Nafion Nanocomposite Electrodes.
    Liu S; Liu Y; Cebeci H; de Villoria RG; Lin JH; Wardle BL; Zhang QM
    Adv Funct Mater; 2010 Oct; 20(19):3266-3271. PubMed ID: 21765822
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two-Dimensional Nanosheets-Based Soft Electro-Chemo-Mechanical Actuators: Recent Advances in Design, Construction, and Applications.
    Zhu X; Hu Y; Wu G; Chen W; Bao N
    ACS Nano; 2021 Jun; 15(6):9273-9298. PubMed ID: 34018737
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fast and Stable Ionic Electroactive Polymer Actuators with PEDOT:PSS/(Graphene⁻Ag-Nanowires) Nanocomposite Electrodes.
    Park M; Kim J; Song H; Kim S; Jeon M
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30223614
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anion Effects on the Ion Exchange Process and the Deformation Property of Ionic Polymer Metal Composite Actuators.
    Aoyagi W; Omiya M
    Materials (Basel); 2016 Jun; 9(6):. PubMed ID: 28773599
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.