BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 24338769)

  • 1. Enhancing the water splitting efficiency of Sn-doped hematite nanoflakes by flame annealing.
    Wang L; Lee CY; Mazare A; Lee K; Müller J; Spiecker E; Schmuki P
    Chemistry; 2014 Jan; 20(1):77-82. PubMed ID: 24338769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced photoelectrochemical water splitting efficiency of a hematite-ordered Sb:SnO2 host-guest system.
    Wang L; Palacios-Padrós A; Kirchgeorg R; Tighineanu A; Schmuki P
    ChemSusChem; 2014 Feb; 7(2):421-4. PubMed ID: 24449523
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ethylene glycol adjusted nanorod hematite film for active photoelectrochemical water splitting.
    Fu L; Yu H; Li Y; Zhang C; Wang X; Shao Z; Yi B
    Phys Chem Chem Phys; 2014 Mar; 16(9):4284-90. PubMed ID: 24451918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced photocurrent density of hematite thin films on FTO substrates: effect of post-annealing temperature.
    Cho ES; Kang MJ; Kang YS
    Phys Chem Chem Phys; 2015 Jun; 17(24):16145-50. PubMed ID: 26032403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulating Sn self-doping and boosting solar water splitting performance of hematite nanorod arrays grown on fluorine-doped tin oxide via low-level Hf doping.
    Ma H; Chen W; Fan Q; Ye C; Zheng M; Wang J
    J Colloid Interface Sci; 2022 Nov; 625():585-595. PubMed ID: 35751984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled Growth of Ferrihydrite Branched Nanosheet Arrays and Their Transformation to Hematite Nanosheet Arrays for Photoelectrochemical Water Splitting.
    Ji M; Cai J; Ma Y; Qi L
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):3651-60. PubMed ID: 26517010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmon-enhanced photoelectrochemical water splitting using au nanoparticles decorated on hematite nanoflake arrays.
    Wang L; Zhou X; Nguyen NT; Schmuki P
    ChemSusChem; 2015 Feb; 8(4):618-22. PubMed ID: 25581403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the efficiency of hematite nanorods for photoelectrochemical water splitting by doping with manganese.
    Gurudayal ; Chiam SY; Kumar MH; Bassi PS; Seng HL; Barber J; Wong LH
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5852-9. PubMed ID: 24702963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lowering the onset potential of Zr-doped hematite nanocoral photoanodes by Al co-doping and surface modification with electrodeposited Co-Pi.
    Jeong IK; Mahadik MA; Hwang JB; Chae WS; Choi SH; Jang JS
    J Colloid Interface Sci; 2021 Jan; 581(Pt B):751-763. PubMed ID: 32818679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uniform Doping of Titanium in Hematite Nanorods for Efficient Photoelectrochemical Water Splitting.
    Wang D; Chen H; Chang G; Lin X; Zhang Y; Aldalbahi A; Peng C; Wang J; Fan C
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):14072-8. PubMed ID: 26052922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating the Role of Substrate Tin Diffusion on Hematite Based Photoelectrochemical Water Splitting System.
    Natarajan K; Bhatt P; Yadav P; Pandey K; Tripathi B; Kumar M
    J Nanosci Nanotechnol; 2018 Mar; 18(3):1856-1863. PubMed ID: 29448672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tubular morphology preservation and doping engineering of Sn/P-codoped hematite for photoelectrochemical water oxidation.
    Duan SF; Geng YY; Pan XB; Yao XQ; Zhao YX; Li X; Tao CL; Qin DD
    Dalton Trans; 2019 Jan; 48(3):928-935. PubMed ID: 30565614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revealing the Role of TiO2 Surface Treatment of Hematite Nanorods Photoanodes for Solar Water Splitting.
    Li X; Bassi PS; Boix PP; Fang Y; Wong LH
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):16960-6. PubMed ID: 26192330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasma-Induced Oxygen Vacancies in Ultrathin Hematite Nanoflakes Promoting Photoelectrochemical Water Oxidation.
    Zhu C; Li C; Zheng M; Delaunay JJ
    ACS Appl Mater Interfaces; 2015 Oct; 7(40):22355-63. PubMed ID: 26400020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sn-Controlled Co-Doped Hematite for Efficient Solar-Assisted Chargeable Zn-Air Batteries.
    Park J; Yoon KY; Kwak MJ; Lee JE; Kang J; Jang JH
    ACS Appl Mater Interfaces; 2021 Nov; 13(46):54906-54915. PubMed ID: 34751554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly self-diffused Sn doping in α-Fe
    Ma H; Mahadik MA; Park JW; Kumar M; Chung HS; Chae WS; Kong GW; Lee HH; Choi SH; Jang JS
    Nanoscale; 2018 Dec; 10(47):22560-22571. PubMed ID: 30480694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of metal doping, doped structure, and annealing under argon on the properties of 30 nm thick ultrathin hematite photoanodes.
    Kim TH; Kim HS; Hwang IC; Yoon KB
    Phys Chem Chem Phys; 2014 Oct; 16(40):21936-40. PubMed ID: 25208648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-Temperature Atomic Layer Deposition of Crystalline and Photoactive Ultrathin Hematite Films for Solar Water Splitting.
    Steier L; Luo J; Schreier M; Mayer MT; Sajavaara T; Grätzel M
    ACS Nano; 2015 Dec; 9(12):11775-83. PubMed ID: 26516784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical and photoelectrochemical properties of Zr-doped hematite nanorod arrays.
    Shen S; Guo P; Wheeler DA; Jiang J; Lindley SA; Kronawitter CX; Zhang JZ; Guo L; Mao SS
    Nanoscale; 2013 Oct; 5(20):9867-74. PubMed ID: 23974247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sn-doped hematite nanostructures for photoelectrochemical water splitting.
    Ling Y; Wang G; Wheeler DA; Zhang JZ; Li Y
    Nano Lett; 2011 May; 11(5):2119-25. PubMed ID: 21476581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.