These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 24338769)

  • 21. Dual-Axial Gradient Doping (Zr and Sn) on Hematite for Promoting Charge Separation in Photoelectrochemical Water Splitting.
    Chen D; Liu Z
    ChemSusChem; 2018 Oct; 11(19):3438-3448. PubMed ID: 30098118
    [TBL] [Abstract][Full Text] [Related]  

  • 22. N and Sn Co-Doped hematite photoanodes for efficient solar water oxidation.
    Jiao T; Lu C; Feng K; Deng J; Long D; Zhong J
    J Colloid Interface Sci; 2021 Mar; 585():660-667. PubMed ID: 33127051
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Templating Sol-Gel Hematite Films with Sacrificial Copper Oxide: Enhancing Photoanode Performance with Nanostructure and Oxygen Vacancies.
    Li Y; Guijarro N; Zhang X; Prévot MS; Jeanbourquin XA; Sivula K; Chen H; Li Y
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):16999-7007. PubMed ID: 26186065
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermal decomposition approach for the formation of α-Fe2O3 mesoporous photoanodes and an α-Fe2O3/CoO hybrid structure for enhanced water oxidation.
    Diab M; Mokari T
    Inorg Chem; 2014 Feb; 53(4):2304-9. PubMed ID: 24471819
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hematite-based photoelectrochemical water splitting supported by inverse opal structures of graphene.
    Yoon KY; Lee JS; Kim K; Bak CH; Kim SI; Kim JB; Jang JH
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22634-9. PubMed ID: 25469502
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Band gap and Morphology Engineering of Hematite Nanoflakes from an
    Ahn HJ; Kment S; Naldoni A; Zbořil R; Schmuki P
    ACS Omega; 2022 Oct; 7(39):35109-35117. PubMed ID: 36211042
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Understanding charge transport in non-doped pristine and surface passivated hematite (Fe
    Bassi PS; Xianglin L; Fang Y; Loo JS; Barber J; Wong LH
    Phys Chem Chem Phys; 2016 Nov; 18(44):30370-30378. PubMed ID: 27782252
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Engineered Sn- and Mg-doped hematite photoanodes for efficient photoelectrochemical water oxidation.
    Cai J; Chen H; Liu C; Yin S; Li H; Xu L; Liu H; Xie Q
    Dalton Trans; 2020 Aug; 49(32):11282-11289. PubMed ID: 32760974
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tuning of oxygen vacancy-induced electrical conductivity in Ti-doped hematite films and its impact on photoelectrochemical water splitting.
    Biswas P; Ainabayev A; Zhussupbekova A; Jose F; O'Connor R; Kaisha A; Walls B; Shvets IV
    Sci Rep; 2020 May; 10(1):7463. PubMed ID: 32366858
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Constructing inverse opal structured hematite photoanodes via electrochemical process and their application to photoelectrochemical water splitting.
    Shi X; Zhang K; Shin K; Moon JH; Lee TW; Park JH
    Phys Chem Chem Phys; 2013 Jul; 15(28):11717-22. PubMed ID: 23752489
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach.
    Sivula K; Zboril R; Le Formal F; Robert R; Weidenkaff A; Tucek J; Frydrych J; Grätzel M
    J Am Chem Soc; 2010 Jun; 132(21):7436-44. PubMed ID: 20443599
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Low-temperature activation of hematite nanowires for photoelectrochemical water oxidation.
    Ling Y; Wang G; Wang H; Yang Y; Li Y
    ChemSusChem; 2014 Mar; 7(3):848-53. PubMed ID: 24493003
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sn/Be Sequentially co-doped Hematite Photoanodes for Enhanced Photoelectrochemical Water Oxidation: Effect of Be(2+) as co-dopant.
    Annamalai A; Lee HH; Choi SH; Lee SY; Gracia-Espino E; Subramanian A; Park J; Kong KJ; Jang JS
    Sci Rep; 2016 Mar; 6():23183. PubMed ID: 27005757
    [TBL] [Abstract][Full Text] [Related]  

  • 34. NiFe-LDH-Decorated Ti-Doped Hematite Photoanode for Enhancing Solar Water-Splitting Efficiency.
    Bai S; Jia S; Zhao Y; Tang P; Feng Y; Luo R; Li D; Chen A
    Inorg Chem; 2023 Sep; 62(37):15039-15049. PubMed ID: 37652045
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Solution growth of Ta-doped hematite nanorods for efficient photoelectrochemical water splitting: a tradeoff between electronic structure and nanostructure evolution.
    Fu Y; Dong CL; Zhou Z; Lee WY; Chen J; Guo P; Zhao L; Shen S
    Phys Chem Chem Phys; 2016 Feb; 18(5):3846-53. PubMed ID: 26763113
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lattice defect-enhanced hydrogen production in nanostructured hematite-based photoelectrochemical device.
    Wang P; Wang D; Lin J; Li X; Peng C; Gao X; Huang Q; Wang J; Xu H; Fan C
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):2295-302. PubMed ID: 22452535
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced Water Splitting Efficiency Through Selective Surface State Removal.
    Zandi O; Hamann TW
    J Phys Chem Lett; 2014 May; 5(9):1522-6. PubMed ID: 26270090
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Probing the dynamics of photogenerated holes in doped hematite photoanodes for solar water splitting using transient absorption spectroscopy.
    Pei GX; Wijten JHJ; Weckhuysen BM
    Phys Chem Chem Phys; 2018 Apr; 20(15):9806-9811. PubMed ID: 29620131
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Controlled growth of vertically oriented hematite/Pt composite nanorod arrays: use for photoelectrochemical water splitting.
    Mao A; Park NG; Han GY; Park JH
    Nanotechnology; 2011 Apr; 22(17):175703. PubMed ID: 21411913
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting.
    Kim JY; Magesh G; Youn DH; Jang JW; Kubota J; Domen K; Lee JS
    Sci Rep; 2013; 3():2681. PubMed ID: 24045290
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.