BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 24338882)

  • 21. Organic-inorganic hybrid silica monolith based immobilized trypsin reactor with high enzymatic activity.
    Ma J; Liang Z; Qiao X; Deng Q; Tao D; Zhang L; Zhang Y
    Anal Chem; 2008 Apr; 80(8):2949-56. PubMed ID: 18333626
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A bifunctional monolithic column for combined protein preconcentration and digestion for high throughput proteomics research.
    Zhang K; Wu S; Tang X; Kaiser NK; Bruce JE
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Apr; 849(1-2):223-30. PubMed ID: 17150420
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Immobilized monolithic enzymatic reactor and its application for analysis of in-vitro fertilization media samples.
    Chen WQ; Obermayr P; Černigoj U; Vidič J; Panić-Janković T; Mitulović G
    Electrophoresis; 2017 Nov; 38(22-23):2957-2964. PubMed ID: 28613010
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of an open-tubular trypsin reactor for on-line digestion of proteins.
    Stigter EC; de Jong GJ; van Bennekom WP
    Anal Bioanal Chem; 2007 Nov; 389(6):1967-77. PubMed ID: 17899035
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High efficiency and quantitatively reproducible protein digestion by trypsin-immobilized magnetic microspheres.
    Sun L; Li Y; Yang P; Zhu G; Dovichi NJ
    J Chromatogr A; 2012 Jan; 1220():68-74. PubMed ID: 22176736
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Correlating enzyme density, conformation and activity on nanoparticle surfaces in highly functional bio-nanocomposites.
    Saha B; Saikia J; Das G
    Analyst; 2015 Jan; 140(2):532-42. PubMed ID: 25407103
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Covalent immobilization of trypsin onto modified magnetite nanoparticles and its application for casein digestion.
    Atacan K; Çakıroğlu B; Özacar M
    Int J Biol Macromol; 2017 Apr; 97():148-155. PubMed ID: 28065752
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of various immobilized enzymatic microreactors coupled on-line with liquid chromatography and mass spectrometry detection for quantitative analysis of cytochrome c.
    Cingöz A; Hugon-Chapuis F; Pichon V
    J Chromatogr A; 2008 Oct; 1209(1-2):95-103. PubMed ID: 18823630
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dual matrix-based immobilized trypsin for complementary proteolytic digestion and fast proteomics analysis with higher protein sequence coverage.
    Fan C; Shi Z; Pan Y; Song Z; Zhang W; Zhao X; Tian F; Peng B; Qin W; Cai Y; Qian X
    Anal Chem; 2014 Feb; 86(3):1452-8. PubMed ID: 24447065
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimization of a trypsin-bioreactor coupled with high-performance liquid chromatography-electrospray ionization tandem mass spectrometry for quality control of biotechnological drugs.
    Temporini C; Perani E; Mancini F; Bartolini M; Calleri E; Lubda D; Felix G; Andrisano V; Massolini G
    J Chromatogr A; 2006 Jul; 1120(1-2):121-31. PubMed ID: 16472537
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Immobilized pepsin microreactor for rapid peptide mapping with nanoelectrospray ionization mass spectrometry.
    Long Y; Wood TD
    J Am Soc Mass Spectrom; 2015 Jan; 26(1):194-7. PubMed ID: 25374334
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient on-chip proteolysis system based on functionalized magnetic silica microspheres.
    Li Y; Yan B; Deng C; Yu W; Xu X; Yang P; Zhang X
    Proteomics; 2007 Jul; 7(14):2330-9. PubMed ID: 17570518
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication of a polystyrene microfluidic chip coupled to electrospray ionization mass spectrometry for protein analysis.
    Hu X; Dong Y; He Q; Chen H; Zhu Z
    J Chromatogr B Analyt Technol Biomed Life Sci; 2015 May; 990():96-103. PubMed ID: 25864010
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Realization of on-tissue protein identification by highly efficient in situ digestion with graphene-immobilized trypsin for MALDI imaging analysis.
    Jiao J; Miao A; Zhang X; Cai Y; Lu Y; Zhang Y; Lu H
    Analyst; 2013 Mar; 138(6):1645-8. PubMed ID: 23364134
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A capillary monolithic trypsin reactor for efficient protein digestion in online and offline coupling to ESI and MALDI mass spectrometry.
    Spross J; Sinz A
    Anal Chem; 2010 Feb; 82(4):1434-43. PubMed ID: 20099804
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microscale immobilized enzyme reactors in proteomics: latest developments.
    Safdar M; Spross J; Jänis J
    J Chromatogr A; 2014 Jan; 1324():1-10. PubMed ID: 24360812
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of gold nanoparticle conjugation on the activity and stability of functional proteins.
    Bailes J; Gazi S; Ivanova R; Soloviev M
    Methods Mol Biol; 2012; 906():89-99. PubMed ID: 22791426
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Immobilization of enzyme on detonation nanodiamond for highly efficient proteolysis.
    Wei L; Zhang W; Lu H; Yang P
    Talanta; 2010 Jan; 80(3):1298-304. PubMed ID: 20006091
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation of reusable bioreactors using reversible immobilization of enzyme on monolithic porous polymer support with attached gold nanoparticles.
    Lv Y; Lin Z; Tan T; Svec F
    Biotechnol Bioeng; 2014 Jan; 111(1):50-8. PubMed ID: 23860941
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Native protein proteolysis in an immobilized enzyme reactor as a function of temperature.
    Rivera-Burgos D; Regnier FE
    Anal Chem; 2012 Aug; 84(16):7021-8. PubMed ID: 22845770
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.