These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 24339043)

  • 41. Surface-enhanced Raman scattering detection of cholinesterase inhibitors.
    Liron Z; Zifman A; Heleg-Shabtai V
    Anal Chim Acta; 2011 Oct; 703(2):234-8. PubMed ID: 21889639
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Highly sensitive colorimetric detection of organophosphate pesticides using copper catalyzed click chemistry.
    Fu G; Chen W; Yue X; Jiang X
    Talanta; 2013 Jan; 103():110-5. PubMed ID: 23200365
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Insecticide detection through protein engineering of Nippostrongylus brasiliensis acetylcholinesterase B.
    Schulze H; Muench SB; Villatte F; Schmid RD; Bachmann TT
    Anal Chem; 2005 Sep; 77(18):5823-30. PubMed ID: 16159111
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reversible inhibition of human acetylcholinesterase by methoxypyridinium species.
    Topczewski JJ; Lodge AM; Yasapala SN; Payne MK; Keshavarzi PM; Quinn DM
    Bioorg Med Chem Lett; 2013 Nov; 23(21):5786-9. PubMed ID: 24076173
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Neurotoxic disorders of organophosphorus compounds and their managements.
    Balali-Mood M; Balali-Mood K
    Arch Iran Med; 2008 Jan; 11(1):65-89. PubMed ID: 18154426
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cascade Reaction System Integrating Single-Atom Nanozymes with Abundant Cu Sites for Enhanced Biosensing.
    Wu Y; Wu J; Jiao L; Xu W; Wang H; Wei X; Gu W; Ren G; Zhang N; Zhang Q; Huang L; Gu L; Zhu C
    Anal Chem; 2020 Feb; 92(4):3373-3379. PubMed ID: 31941278
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A sensitive fluorescent sensor for selective determination of dichlorvos based on the recovered fluorescence of carbon dots-Cu(II) system.
    Hou J; Dong G; Tian Z; Lu J; Wang Q; Ai S; Wang M
    Food Chem; 2016 Jul; 202():81-7. PubMed ID: 26920268
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Mechanism of the effect of diazepam on acetylcholine concentration in mouse brain].
    Tonkopiĭ VD; Sofronov GA; Aleksandriĭskaia IE; Brestkina LM
    Biull Eksp Biol Med; 1978; 86(7):38-40. PubMed ID: 678649
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Detection of pesticide by polymeric enzyme electrodes.
    Dutta K; Bhattacharyay D; Mukherjee A; Setford SJ; Turner AP; Sarkar P
    Ecotoxicol Environ Saf; 2008 Mar; 69(3):556-61. PubMed ID: 17328951
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fluorescence biosensing micropatterned surfaces based on immobilized human acetylcholinesterase.
    Bartolini M; Naldi M; Nicolau DV; van Delft FC; van Zijl J; Snijder J; van den Heuvel EF; Naburgh EP; Calonghi N; Andrisano V
    Anal Bioanal Chem; 2013 Jan; 405(2-3):795-804. PubMed ID: 22814970
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A novel acetylcholinesterase biosensor based on carboxylic graphene coated with silver nanoparticles for pesticide detection.
    Liu Y; Wang G; Li C; Zhou Q; Wang M; Yang L
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():253-8. PubMed ID: 24411376
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A photoluminescent nanocrystal-based signaling protocol highly sensitive to nerve agents and highly toxic organophosphate pesticides.
    Yu T; Shen JS; Bai HH; Guo L; Tang JJ; Jiang YB; Xie JW
    Analyst; 2009 Oct; 134(10):2153-7. PubMed ID: 19768229
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Biosensor based on acetylcholinesterase immobilized onto layered double hydroxides for flow injection/amperometric detection of organophosphate pesticides.
    Gong J; Guan Z; Song D
    Biosens Bioelectron; 2013 Jan; 39(1):320-3. PubMed ID: 22868055
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Pesticide detection with a liposome-based nano-biosensor.
    Vamvakaki V; Chaniotakis NA
    Biosens Bioelectron; 2007 Jun; 22(12):2848-53. PubMed ID: 17223333
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Quantitative structure-activity relationships for organophosphates binding to acetylcholinesterase.
    Ruark CD; Hack CE; Robinson PJ; Anderson PE; Gearhart JM
    Arch Toxicol; 2013 Feb; 87(2):281-9. PubMed ID: 22990135
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An activator-induced quencher-detachment-based turn-on probe with a cationic substrate moiety for acetylcholinesterase.
    Oe M; Miki K; Masuda A; Nogita K; Ohe K
    Chem Commun (Camb); 2022 Feb; 58(10):1510-1513. PubMed ID: 34874369
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Luminescent nanoparticles for rapid monitoring of endogenous acetylcholine release in mice atria.
    Mukhametshina A; Petrov A; Fedorenko S; Petrov K; Nizameev I; Mustafina A; Sinyashin O
    Luminescence; 2018 May; 33(3):588-593. PubMed ID: 29377578
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Functional genomics of nematode acetylcholinesterases.
    Selkirk ME; Lazari O; Matthews JB
    Parasitology; 2005; 131 Suppl():S3-18. PubMed ID: 16569291
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Acetylcholinesterase-based organophosphate nerve agent sensing photonic crystal.
    Walker JP; Asher SA
    Anal Chem; 2005 Mar; 77(6):1596-600. PubMed ID: 15762562
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Photoluminescent C-dots@RGO probe for sensitive and selective detection of acetylcholine.
    Wang CI; Periasamy AP; Chang HT
    Anal Chem; 2013 Mar; 85(6):3263-70. PubMed ID: 23398232
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.