These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 24339160)

  • 1. Proteomics of aluminum tolerance in plants.
    Zheng L; Lan P; Shen RF; Li WF
    Proteomics; 2014 Mar; 14(4-5):566-78. PubMed ID: 24339160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic and molecular mechanisms of aluminum tolerance in plants.
    Simões CC; Melo JO; Magalhaes JV; Guimarães CT
    Genet Mol Res; 2012 Jul; 11(3):1949-57. PubMed ID: 22869550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative proteome analysis of differentially expressed proteins induced by Al toxicity in soybean.
    Zhen Y; Qi JL; Wang SS; Su J; Xu GH; Zhang MS; Miao L; Peng XX; Tian D; Yang YH
    Physiol Plant; 2007 Dec; 131(4):542-54. PubMed ID: 18251846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxicity and tolerance of aluminum in plants: tailoring plants to suit to acid soils.
    Sade H; Meriga B; Surapu V; Gadi J; Sunita MS; Suravajhala P; Kavi Kishor PB
    Biometals; 2016 Apr; 29(2):187-210. PubMed ID: 26796895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A glance into aluminum toxicity and resistance in plants.
    Poschenrieder C; Gunsé B; Corrales I; Barceló J
    Sci Total Environ; 2008 Aug; 400(1-3):356-68. PubMed ID: 18657304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Root proteome of rice studied by iTRAQ provides integrated insight into aluminum stress tolerance mechanisms in plants.
    Wang ZQ; Xu XY; Gong QQ; Xie C; Fan W; Yang JL; Lin QS; Zheng SJ
    J Proteomics; 2014 Feb; 98():189-205. PubMed ID: 24412201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted expression of SbMATE in the root distal transition zone is responsible for sorghum aluminum resistance.
    Sivaguru M; Liu J; Kochian LV
    Plant J; 2013 Oct; 76(2):297-307. PubMed ID: 23865685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plant Adaptation to Acid Soils: The Molecular Basis for Crop Aluminum Resistance.
    Kochian LV; Piñeros MA; Liu J; Magalhaes JV
    Annu Rev Plant Biol; 2015; 66():571-98. PubMed ID: 25621514
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Root iTRAQ protein profile analysis of two Citrus species differing in aluminum-tolerance in response to long-term aluminum-toxicity.
    Jiang HX; Yang LT; Qi YP; Lu YB; Huang ZR; Chen LS
    BMC Genomics; 2015 Nov; 16():949. PubMed ID: 26573913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morpho-physiological analysis of tolerance to aluminum toxicity in rice varieties of North East India.
    Awasthi JP; Saha B; Regon P; Sahoo S; Chowra U; Pradhan A; Roy A; Panda SK
    PLoS One; 2017; 12(4):e0176357. PubMed ID: 28448589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two functionally distinct members of the MATE (multi-drug and toxic compound extrusion) family of transporters potentially underlie two major aluminum tolerance QTLs in maize.
    Maron LG; Piñeros MA; Guimarães CT; Magalhaes JV; Pleiman JK; Mao C; Shaff J; Belicuas SN; Kochian LV
    Plant J; 2010 Mar; 61(5):728-40. PubMed ID: 20003133
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deciphering the major metabolic pathways associated with aluminum tolerance in popcorn roots using label-free quantitative proteomics.
    Pinto VB; Almeida VC; Pereira-Lima ÍA; Vale EM; Araújo WL; Silveira V; Viana JMS
    Planta; 2021 Nov; 254(6):132. PubMed ID: 34821986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural variation underlies alterations in Nramp aluminum transporter (NRAT1) expression and function that play a key role in rice aluminum tolerance.
    Li JY; Liu J; Dong D; Jia X; McCouch SR; Kochian LV
    Proc Natl Acad Sci U S A; 2014 Apr; 111(17):6503-8. PubMed ID: 24728832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Mechanisms for Coping with Al Toxicity in Plants.
    Zhang X; Long Y; Huang J; Xia J
    Int J Mol Sci; 2019 Mar; 20(7):. PubMed ID: 30925682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomics dissection of plant responses to mineral nutrient deficiency.
    Liang C; Tian J; Liao H
    Proteomics; 2013 Feb; 13(3-4):624-36. PubMed ID: 23193087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological responses and tolerance of plant shoot to aluminum toxicity.
    Chen LS
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2006 Apr; 32(2):143-55. PubMed ID: 16622312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AcEXPA1, an α-expansin gene, participates in the aluminum tolerance of carpetgrass (Axonopus compressus) through root growth regulation.
    Li J; Liu L; Wang L; Rao IM; Wang Z; Chen Z
    Plant Cell Rep; 2024 Jun; 43(6):159. PubMed ID: 38822842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomics of phosphate use and deprivation in plants.
    Alexova R; Millar AH
    Proteomics; 2013 Feb; 13(3-4):609-23. PubMed ID: 23281194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological and proteomic characterization of salt tolerance in a mangrove plant, Bruguiera gymnorrhiza (L.) Lam.
    Zhu Z; Chen J; Zheng HL
    Tree Physiol; 2012 Nov; 32(11):1378-88. PubMed ID: 23100256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. iTRAQ-based proteomics screen for potential regulators of wheat (Triticum aestivum L.) root cell wall component response to Al stress.
    Yang Y; Ma L; Zeng H; Chen LY; Zheng Y; Li CX; Yang ZP; Wu N; Mu X; Dai CY; Guan HL; Cui XM; Liu Y
    Gene; 2018 Oct; 675():301-311. PubMed ID: 30180969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.