BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 24339354)

  • 1. A differential fluorescent receptor for nucleic acid analysis.
    Bengtson HN; Kolpashchikov DM
    Chembiochem; 2014 Jan; 15(2):228-31. PubMed ID: 24339354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of single-point mutations in mycobacterial 16S rRNA sequences by confocal single-molecule fluorescence spectroscopy.
    Marmé N; Friedrich A; Müller M; Nolte O; Wolfrum J; Hoheisel JD; Sauer M; Knemeyer JP
    Nucleic Acids Res; 2006 Jul; 34(13):e90. PubMed ID: 16870719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A single molecular beacon probe is sufficient for the analysis of multiple nucleic acid sequences.
    Gerasimova YV; Hayson A; Ballantyne J; Kolpashchikov DM
    Chembiochem; 2010 Aug; 11(12):1762-8. PubMed ID: 20665615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular-beacon-based tricomponent probe for SNP analysis in folded nucleic acids.
    Nguyen C; Grimes J; Gerasimova YV; Kolpashchikov DM
    Chemistry; 2011 Nov; 17(46):13052-8. PubMed ID: 21956816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Operating Cooperatively (OC) sensor for highly specific recognition of nucleic acids.
    Cornett EM; O'Steen MR; Kolpashchikov DM
    PLoS One; 2013; 8(2):e55919. PubMed ID: 23441157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. OWL2: a molecular beacon-based nanostructure for highly selective detection of single-nucleotide variations in folded nucleic acids.
    Mueller BL; Liberman MJ; Kolpashchikov DM
    Nanoscale; 2023 Mar; 15(12):5735-5742. PubMed ID: 36880268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Split Dapoxyl Aptamer for Sequence-Selective Analysis of Nucleic Acid Sequence Based Amplification Amplicons.
    Kikuchi N; Reed A; Gerasimova YV; Kolpashchikov DM
    Anal Chem; 2019 Feb; 91(4):2667-2671. PubMed ID: 30680988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid detection of specific gene mutations associated with isoniazid or rifampicin resistance in Mycobacterium tuberculosis clinical isolates using non-fluorescent low-density DNA microarrays.
    Aragón LM; Navarro F; Heiser V; Garrigó M; Español M; Coll P
    J Antimicrob Chemother; 2006 May; 57(5):825-31. PubMed ID: 16547071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visualization of nucleic acids with synthetic exciton-controlled fluorescent oligonucleotide probes.
    Wang DO; Okamoto A
    Methods Mol Biol; 2015; 1262():69-87. PubMed ID: 25555576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tricolour fluorescence detection of sequence-specific DNA with a new molecular beacon and a nucleic acid dye TOTO-3.
    Xiang D; Zhang C; Chen L; Ji X; He Z
    Analyst; 2012 Dec; 137(24):5898-905. PubMed ID: 23113317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SNP analysis using a molecular beacon-based operating cooperatively (OC) sensor.
    Cornett EM; Kolpashchikov DM
    Methods Mol Biol; 2013; 1039():81-6. PubMed ID: 24026687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Capillary electrophoresis and fluorescence studies on molecular beacon-based variable length oligonucleotide target discrimination.
    Ramachandran A; Zhang M; Goad D; Olah G; Malayer JR; El-Rassi Z
    Electrophoresis; 2003 Jan; 24(1-2):70-7. PubMed ID: 12652574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescent microsphere-based readout technology for multiplexed human single nucleotide polymorphism analysis and bacterial identification.
    Ye F; Li MS; Taylor JD; Nguyen Q; Colton HM; Casey WM; Wagner M; Weiner MP; Chen J
    Hum Mutat; 2001 Apr; 17(4):305-16. PubMed ID: 11295829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dumbbell-shaped DNA analytes amplified by polymerase chain reaction for robust single-nucleotide polymorphism genotyping by affinity capillary electrophoresis.
    Shibata H; Ogawa A; Kanayama N; Takarada T; Maeda M
    Anal Chem; 2013 Jun; 85(11):5347-52. PubMed ID: 23659631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The owl sensor: a 'fragile' DNA nanostructure for the analysis of single nucleotide variations.
    Karadeema RJ; Stancescu M; Steidl TP; Bertot SC; Kolpashchikov DM
    Nanoscale; 2018 May; 10(21):10116-10122. PubMed ID: 29781024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Mycobacterium tuberculosis by PCR-linked reverse hybridization using specific rpoB oligonucleotide probes.
    Hong SK; Kim BJ; Yun YJ; Lee KH; Kim EC; Park EM; Park YG; Bai GH; Kook YH
    J Microbiol Methods; 2004 Oct; 59(1):71-9. PubMed ID: 15325754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid, high-throughput detection of rifampin resistance and heteroresistance in Mycobacterium tuberculosis by use of sloppy molecular beacon melting temperature coding.
    Chakravorty S; Kothari H; Aladegbami B; Cho EJ; Lee JS; Roh SS; Kim H; Kwak H; Lee EG; Hwang SH; Banada PP; Safi H; Via LE; Cho SN; Barry CE; Alland D
    J Clin Microbiol; 2012 Jul; 50(7):2194-202. PubMed ID: 22535987
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of Hybridization Probes to DNA Machines and Robots.
    Kolpashchikov DM
    Acc Chem Res; 2019 Jul; 52(7):1949-1956. PubMed ID: 31243970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ligation amplification and fluorescence detection of Mycobacterium tuberculosis DNA.
    Iovannisci DM; Winn-Deen ES
    Mol Cell Probes; 1993 Feb; 7(1):35-43. PubMed ID: 8455641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repetitive DNA sequence of Mycobacterium tuberculosis: analysis of differential hybridization pattern with other mycobacteria.
    Reddi PP; Talwar GP; Khandekar PS
    Int J Lepr Other Mycobact Dis; 1988 Dec; 56(4):592-8. PubMed ID: 3146611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.