BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 24339360)

  • 1. Au-thiol interaction chemistry to influence the structural transformation of semiconductor nanocrystals and formation of giant nanostructures.
    Bose R; Manna G; Pradhan N
    Small; 2014 Apr; 10(7):1289-93. PubMed ID: 24339360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Size- and shape-controlled synthesis of ZnSe nanocrystals using SeO2 as selenium precursor.
    Shen H; Niu JZ; Wang H; Li X; Li LS; Chen X
    Dalton Trans; 2010 Dec; 39(47):11432-8. PubMed ID: 20976341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water-soluble semiconductor nanocrystals cap exchanged with metalated ligands.
    Liu D; Snee PT
    ACS Nano; 2011 Jan; 5(1):546-50. PubMed ID: 21141814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphine-free synthesis of high quality ZnSe, ZnSe/ZnS, and Cu-, Mn-doped ZnSe nanocrystals.
    Shen H; Wang H; Li X; Niu JZ; Wang H; Chen X; Li LS
    Dalton Trans; 2009 Dec; (47):10534-40. PubMed ID: 20023877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Au/ZnSe-Based Surface Enhanced Infrared Absorption Spectroscopy as a Universal Platform for Bioanalysis.
    Bao WJ; Li J; Li J; Zhang QW; Liu Y; Shi CF; Xia XH
    Anal Chem; 2018 Mar; 90(6):3842-3848. PubMed ID: 29457448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of primary amine capped CdSe, ZnSe, and ZnS quantum dots by FT-IR: determination of surface bonding interaction and identification of selective desorption.
    Cooper JK; Franco AM; Gul S; Corrado C; Zhang JZ
    Langmuir; 2011 Jul; 27(13):8486-93. PubMed ID: 21631120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioconjugation of hydroxylated semiconductor nanocrystals and background-free biomolecule detection.
    Kim Y; Kim W; Yoon HJ; Shin SK
    Bioconjug Chem; 2010 Jul; 21(7):1305-11. PubMed ID: 20583788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering fluorescence in Au-tipped, CdSe-seeded CdS nanoheterostructures.
    Chakrabortty S; Xing G; Xu Y; Ngiam SW; Mishra N; Sum TC; Chan Y
    Small; 2011 Oct; 7(20):2847-52. PubMed ID: 21990190
    [No Abstract]   [Full Text] [Related]  

  • 9. Ligand-controlled polytypism of thick-shell CdSe/CdS nanocrystals.
    Mahler B; Lequeux N; Dubertret B
    J Am Chem Soc; 2010 Jan; 132(3):953-9. PubMed ID: 20043669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Porous ZnO-ZnSe nanocomposites for visible light photocatalysis.
    Cho S; Jang JW; Lee JS; Lee KH
    Nanoscale; 2012 Mar; 4(6):2066-71. PubMed ID: 22337249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A facile "green" synthesis of ascorbic acid-capped ZnSe nanoparticles.
    Oluwafemi OS; Revaprasadu N; Adeyemi OO
    Colloids Surf B Biointerfaces; 2010 Aug; 79(1):126-30. PubMed ID: 20417073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solution-phase synthesis and high photocatalytic activity of wurtzite ZnSe ultrathin nanobelts: a general route to 1D semiconductor nanostructured materials.
    Xiong S; Xi B; Wang C; Xi G; Liu X; Qian Y
    Chemistry; 2007; 13(28):7926-32. PubMed ID: 17616961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphine-free synthesis of high-quality reverse type-I ZnSe/CdSe core with CdS/Cd(x)Zn(1 - x)S/ZnS multishell nanocrystals and their application for detection of human hepatitis B surface antigen.
    Shen H; Yuan H; Niu JZ; Xu S; Zhou C; Ma L; Li LS
    Nanotechnology; 2011 Sep; 22(37):375602. PubMed ID: 21852741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water-based route to ligand-selective synthesis of ZnSe and Cd-doped ZnSe quantum dots with tunable ultraviolet A to blue photoluminescence.
    Deng Z; Lie FL; Shen S; Ghosh I; Mansuripur M; Muscat AJ
    Langmuir; 2009 Jan; 25(1):434-42. PubMed ID: 19053829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Type-II nanorod heterostructure formation through one-step cation exchange.
    Chen MY; Hsu YJ
    Nanoscale; 2013 Jan; 5(1):363-8. PubMed ID: 23172154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Avoiding Thiol Compound Interference: A Nanoplatform Based on High-Fidelity Au-Se Bonds for Biological Applications.
    Hu B; Kong F; Gao X; Jiang L; Li X; Gao W; Xu K; Tang B
    Angew Chem Int Ed Engl; 2018 May; 57(19):5306-5309. PubMed ID: 29527792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanopattern formation in self-assembled monolayers of thiol-capped Au nanocrystals.
    Banerjee R; Hazra S; Banerjee S; Sanyal MK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):056204. PubMed ID: 20365057
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thiolated DAB dendrimer/ZnSe nanoparticles for C-reactive protein recognition in human serum.
    Algarra M; Campos BB; Gomes D; Alonso B; Casado CM; Arrebola MM; Diez de los Rios MJ; Herrera-Gutiérrez ME; Seller-Pérez G; Esteves da Silva JC
    Talanta; 2012 Sep; 99():574-9. PubMed ID: 22967596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bionanofabrication of metallic and semiconductor nanoparticle arrays using S-layer protein lattices with different lateral spacings and geometries.
    Mark SS; Bergkvist M; Yang X; Teixeira LM; Bhatnagar P; Angert ER; Batt CA
    Langmuir; 2006 Apr; 22(8):3763-74. PubMed ID: 16584254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Au@TiO2-CdS ternary nanostructures for efficient visible-light-driven hydrogen generation.
    Fang J; Xu L; Zhang Z; Yuan Y; Cao S; Wang Z; Yin L; Liao Y; Xue C
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):8088-92. PubMed ID: 23865712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.