These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 24339728)

  • 1. Nanoparticles influence droplet formation in a T-shaped microfluidic.
    Wang R
    J Nanopart Res; 2013; 15(12):2128. PubMed ID: 24339728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical Simulation and Experimental Validation of Liquid Metal Droplet Formation in a Co-Flowing Capillary Microfluidic Device.
    Hu Q; Jiang T; Jiang H
    Micromachines (Basel); 2020 Feb; 11(2):. PubMed ID: 32033467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dripping, Jetting and Regime Transition of Droplet Formation in a Buoyancy-Assisted Microfluidic Device.
    Shen C; Liu F; Wu L; Yu C; Yu W
    Micromachines (Basel); 2020 Oct; 11(11):. PubMed ID: 33121113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of dynamic interfacial tension on droplet formation during membrane emulsification.
    van der Graaf S; Schroën CG; van der Sman RG; Boom RM
    J Colloid Interface Sci; 2004 Sep; 277(2):456-63. PubMed ID: 15341859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motion of a droplet through microfluidic ratchets.
    Liu J; Yap YF; Nguyen NT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046319. PubMed ID: 19905448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of dynamic interfacial tension and its effect on droplet formation in the T-shaped microdispersion process.
    Wang K; Lu YC; Xu JH; Luo GS
    Langmuir; 2009 Feb; 25(4):2153-8. PubMed ID: 19152256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of Nanoparticles on the Evaporation Behavior of Nanofluid Droplets: A
    Wang R; Pan G; Qian S; Li L; Zhu Z
    Langmuir; 2020 Feb; 36(4):919-930. PubMed ID: 31886672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic Investigation of Nanoparticles' Role in Mobilizing Trapped Oil Droplets in Porous Media.
    Xu K; Zhu P; Huh C; Balhoff MT
    Langmuir; 2015 Dec; 31(51):13673-9. PubMed ID: 26671612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental study on dynamic interfacial tension with mixture of SDS-PEG as surfactants in a coflowing microfluidic device.
    Tostado CP; Xu JH; Du AW; Luo GS
    Langmuir; 2012 Feb; 28(6):3120-8. PubMed ID: 22250701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of the breakup process of viscous droplets by an external electric field inside a microfluidic device.
    Li Y; Jain M; Ma Y; Nandakumar K
    Soft Matter; 2015 May; 11(19):3884-99. PubMed ID: 25864524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasound emulsification: effect of ultrasonic and physicochemical properties on dispersed phase volume and droplet size.
    Gaikwad SG; Pandit AB
    Ultrason Sonochem; 2008 Apr; 15(4):554-563. PubMed ID: 17698396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of acoustic droplet formation in a microfluidic flow-focusing device.
    Cheung YN; Qiu H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 2):066310. PubMed ID: 22304193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A numerical study on the dynamics of droplet formation in a microfluidic double T-junction.
    Ngo IL; Dang TD; Byon C; Joo SW
    Biomicrofluidics; 2015 Mar; 9(2):024107. PubMed ID: 25825622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions.
    Christopher GF; Noharuddin NN; Taylor JA; Anna SL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036317. PubMed ID: 18851153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the effect of phospholipids on droplet formation and surface property evolution in microfluidic devices for droplet interface bilayer (DIB) formation.
    Stephenson EB; García Ramírez R; Farley S; Adolph-Hammond K; Lee G; Frostad JM; Elvira KS
    Biomicrofluidics; 2022 Jul; 16(4):044112. PubMed ID: 36035888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interfacial Tension Measurements in Microfluidic Quasi-Static Extensional Flows.
    Lee D; Shen AQ
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33800831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymer and particle adsorption at the PDMS droplet-water interface.
    Prestidge CA; Barnes T; Simovic S
    Adv Colloid Interface Sci; 2004 May; 108-109():105-18. PubMed ID: 15072933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of anisotropic nanoparticles on the deposition pattern of an evaporating droplet.
    Ye X; Fei L; Lu L; Li C
    Eur Phys J E Soft Matter; 2019 Feb; 42(2):17. PubMed ID: 30788606
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on the Effect of Nanoparticle Used in Nano-Fluid Flooding on Droplet-Interface Electro-Coalescence.
    Yang D; Sun H; Chang Q; Sun Y; He L
    Nanomaterials (Basel); 2021 Jul; 11(7):. PubMed ID: 34361150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical Simulation and Experimental Verification of Droplet Generation in Microfluidic Digital PCR Chip.
    Meng X; Yu Y; Jin G
    Micromachines (Basel); 2021 Apr; 12(4):. PubMed ID: 33917077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.