These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 24339920)
1. Elevated CO(2) modifies N acquisition of Medicago truncatula by enhancing N fixation and reducing nitrate uptake from soil. Guo H; Sun Y; Li Y; Liu X; Ren Q; Zhu-Salzman K; Ge F PLoS One; 2013; 8(12):e81373. PubMed ID: 24339920 [TBL] [Abstract][Full Text] [Related]
2. Pea aphid promotes amino acid metabolism both in Medicago truncatula and bacteriocytes to favor aphid population growth under elevated CO2. Guo H; Sun Y; Li Y; Tong B; Harris M; Zhu-Salzman K; Ge F Glob Chang Biol; 2013 Oct; 19(10):3210-23. PubMed ID: 23686968 [TBL] [Abstract][Full Text] [Related]
3. Free-air CO2 enrichment (FACE) reduces the inhibitory effect of soil nitrate on N2 fixation of Pisum sativum. Butterly CR; Armstrong R; Chen D; Tang C Ann Bot; 2016 Jan; 117(1):177-85. PubMed ID: 26346721 [TBL] [Abstract][Full Text] [Related]
4. Elevated CO2 decreases the response of the ethylene signaling pathway in Medicago truncatula and increases the abundance of the pea aphid. Guo H; Sun Y; Li Y; Liu X; Zhang W; Ge F New Phytol; 2014 Jan; 201(1):279-291. PubMed ID: 24015892 [TBL] [Abstract][Full Text] [Related]
5. Elevated CO2 alters the feeding behaviour of the pea aphid by modifying the physical and chemical resistance of Medicago truncatula. Guo H; Sun Y; Li Y; Liu X; Wang P; Zhu-Salzman K; Ge F Plant Cell Environ; 2014 Sep; 37(9):2158-68. PubMed ID: 24697655 [TBL] [Abstract][Full Text] [Related]
6. Growth and nitrogen fixation in Lotus japonicus and Medicago truncatula under NaCl stress: nodule carbon metabolism. López M; Herrera-Cervera JA; Iribarne C; Tejera NA; Lluch C J Plant Physiol; 2008 Apr; 165(6):641-50. PubMed ID: 17728011 [TBL] [Abstract][Full Text] [Related]
7. The efficiency of nitrogen fixation of the model legume Medicago truncatula (Jemalong A17) is low compared to Medicago sativa. Sulieman S; Schulze J J Plant Physiol; 2010 Jun; 167(9):683-92. PubMed ID: 20207444 [TBL] [Abstract][Full Text] [Related]
8. Inhibition of glutamine synthetase by phosphinothricin leads to transcriptome reprograming in root nodules of Medicago truncatula. Seabra AR; Pereira PA; Becker JD; Carvalho HG Mol Plant Microbe Interact; 2012 Jul; 25(7):976-92. PubMed ID: 22414438 [TBL] [Abstract][Full Text] [Related]
9. Unexpectedly low nitrogen acquisition and absence of root architecture adaptation to nitrate supply in a Medicago truncatula highly branched root mutant. Bourion V; Martin C; de Larambergue H; Jacquin F; Aubert G; Martin-Magniette ML; Balzergue S; Lescure G; Citerne S; Lepetit M; Munier-Jolain N; Salon C; Duc G J Exp Bot; 2014 Jun; 65(9):2365-80. PubMed ID: 24706718 [TBL] [Abstract][Full Text] [Related]
10. Analysis and modeling of the integrative response of Medicago truncatula to nitrogen constraints. Salon C; Lepetit M; Gamas P; Jeudy C; Moreau S; Moreau D; Voisin AS; Duc G; Bourion V; Munier-Jolain N C R Biol; 2009 Nov; 332(11):1022-33. PubMed ID: 19909924 [TBL] [Abstract][Full Text] [Related]
11. The presence of nodules on legume root systems can alter phenotypic plasticity in response to internal nitrogen independent of nitrogen fixation. Goh CH; Nicotra AB; Mathesius U Plant Cell Environ; 2016 Apr; 39(4):883-96. PubMed ID: 26523414 [TBL] [Abstract][Full Text] [Related]
12. Differential responses of the sunn4 and rdn1-1 super-nodulation mutants of Medicago truncatula to elevated atmospheric CO2. Qiao Y; Miao S; Jin J; Mathesius U; Tang C Ann Bot; 2021 Sep; 128(4):441-452. PubMed ID: 34297052 [TBL] [Abstract][Full Text] [Related]
13. Nitrate application or P deficiency induce a decline in Medicago truncatula N Liese R; Schulze J; Cabeza RA Sci Rep; 2017 Apr; 7():46264. PubMed ID: 28393902 [TBL] [Abstract][Full Text] [Related]
14. Glutamine synthetase is a molecular target of nitric oxide in root nodules of Medicago truncatula and is regulated by tyrosine nitration. Melo PM; Silva LS; Ribeiro I; Seabra AR; Carvalho HG Plant Physiol; 2011 Nov; 157(3):1505-17. PubMed ID: 21914816 [TBL] [Abstract][Full Text] [Related]
15. The putative transporter MtUMAMIT14 participates in nodule formation in Medicago truncatula. Garcia K; Cloghessy K; Cooney DR; Shelley B; Chakraborty S; Kafle A; Busidan A; Sonawala U; Collier R; Jayaraman D; Ané JM; Pilot G Sci Rep; 2023 Jan; 13(1):804. PubMed ID: 36646812 [TBL] [Abstract][Full Text] [Related]
16. The activity of nodules of the supernodulating mutant Mtsunn is not limited by photosynthesis under optimal growth conditions. Cabeza RA; Lingner A; Liese R; Sulieman S; Senbayram M; Tränkner M; Dittert K; Schulze J Int J Mol Sci; 2014 Apr; 15(4):6031-45. PubMed ID: 24727372 [TBL] [Abstract][Full Text] [Related]
17. Developmental stage- and concentration-specific sodium nitroprusside application results in nitrate reductase regulation and the modification of nitrate metabolism in leaves of Medicago truncatula plants. Antoniou C; Filippou P; Mylona P; Fasoula D; Ioannides I; Polidoros A; Fotopoulos V Plant Signal Behav; 2013 Sep; 8(9):. PubMed ID: 23838961 [TBL] [Abstract][Full Text] [Related]
18. Adaptation of Medicago truncatula to nitrogen limitation is modulated via local and systemic nodule developmental responses. Jeudy C; Ruffel S; Freixes S; Tillard P; Santoni AL; Morel S; Journet EP; Duc G; Gojon A; Lepetit M; Salon C New Phytol; 2010 Feb; 185(3):817-28. PubMed ID: 20015066 [TBL] [Abstract][Full Text] [Related]
19. The peptide-encoding CEP1 gene modulates lateral root and nodule numbers in Medicago truncatula. Imin N; Mohd-Radzman NA; Ogilvie HA; Djordjevic MA J Exp Bot; 2013 Dec; 64(17):5395-409. PubMed ID: 24259455 [TBL] [Abstract][Full Text] [Related]