BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 24340194)

  • 1. Projected marine climate change: effects on copepod oxidative status and reproduction.
    Vehmaa A; Hogfors H; Gorokhova E; Brutemark A; Holmborn T; Engström-Öst J
    Ecol Evol; 2013 Nov; 3(13):4548-57. PubMed ID: 24340194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bloom-forming cyanobacteria support copepod reproduction and development in the Baltic Sea.
    Hogfors H; Motwani NH; Hajdu S; El-Shehawy R; Holmborn T; Vehmaa A; Engström-Öst J; Brutemark A; Gorokhova E
    PLoS One; 2014; 9(11):e112692. PubMed ID: 25409500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Copepod reproductive effort and oxidative status as responses to warming in the marine environment.
    von Weissenberg E; Jansson A; Vuori KA; Engström-Öst J
    Ecol Evol; 2022 Feb; 12(2):e8594. PubMed ID: 35222966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maternal effects may act as an adaptation mechanism for copepods facing pH and temperature changes.
    Vehmaa A; Brutemark A; Engström-Öst J
    PLoS One; 2012; 7(10):e48538. PubMed ID: 23119052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined Effects of Ocean Warming and Acidification on Copepod Abundance, Body Size and Fatty Acid Content.
    Garzke J; Hansen T; Ismar SM; Sommer U
    PLoS One; 2016; 11(5):e0155952. PubMed ID: 27224476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antioxidant Responses in Copepods Are Driven Primarily by Food Intake, Not by Toxin-Producing Cyanobacteria in the Diet.
    Gorokhova E; El-Shehawy R
    Front Physiol; 2021; 12():805646. PubMed ID: 35058807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ocean acidification ameliorates harmful effects of warming in primary consumer.
    Pedersen SA; Hanssen AE
    Ecol Evol; 2018 Jan; 8(1):396-404. PubMed ID: 29321880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Reproductive Capacities of the Calanoid Copepods
    Behbehani M; Uddin S; Habibi N; Al-Sarawi HA; Al-Enezi Y
    Animals (Basel); 2023 Jun; 13(13):. PubMed ID: 37443958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anthropogenic climate change impacts on copepod trait biogeography.
    McGinty N; Barton AD; Record NR; Finkel ZV; Johns DG; Stock CA; Irwin AJ
    Glob Chang Biol; 2021 Apr; 27(7):1431-1442. PubMed ID: 33347685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Copepod hatching success in marine ecosystems with high diatom concentrations.
    Irigoien X; Harris RP; Verheye HM; Joly P; Runge J; Starr M; Pond D; Campbell R; Shreeve R; Ward P; Smith AN; Dam HG; Peterson W; Tirelli V; Koski M; Smith T; Harbour D; Davidson R
    Nature; 2002 Sep; 419(6905):387-9. PubMed ID: 12353032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Have we been underestimating the effects of ocean acidification in zooplankton?
    Cripps G; Lindeque P; Flynn KJ
    Glob Chang Biol; 2014 Nov; 20(11):3377-85. PubMed ID: 24782283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Response of marine copepods to a changing tropical environment: winners, losers and implications.
    Chew LL; Chong VC
    PeerJ; 2016; 4():e2052. PubMed ID: 27257540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of ocean acidification on copepods.
    Wang M; Jeong CB; Lee YH; Lee JS
    Aquat Toxicol; 2018 Mar; 196():17-24. PubMed ID: 29324394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous warming and acidification limit population fitness and reveal phenotype costs for a marine copepod.
    deMayo JA; Brennan RS; Pespeni MH; Finiguerra M; Norton L; Park G; Baumann H; Dam HG
    Proc Biol Sci; 2023 Sep; 290(2006):20231033. PubMed ID: 37670582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Forecasting future recruitment success for Atlantic cod in the warming and acidifying Barents Sea.
    Koenigstein S; Dahlke FT; Stiasny MH; Storch D; Clemmesen C; Pörtner HO
    Glob Chang Biol; 2018 Jan; 24(1):526-535. PubMed ID: 28755499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antagonistic interplay between pH and food resources affects copepod traits and performance in a year-round upwelling system.
    Aguilera VM; Vargas CA; Dam HG
    Sci Rep; 2020 Jan; 10(1):62. PubMed ID: 31919456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toxicity of nickel in the marine calanoid copepod Acartia tonsa: Nickel chloride versus nanoparticles.
    Zhou C; Vitiello V; Casals E; Puntes VF; Iamunno F; Pellegrini D; Changwen W; Benvenuto G; Buttino I
    Aquat Toxicol; 2016 Jan; 170():1-12. PubMed ID: 26562184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct and indirect effects of elevated CO2 are revealed through shifts in phytoplankton, copepod development, and fatty acid accumulation.
    McLaskey AK; Keister JE; Schoo KL; Olson MB; Love BA
    PLoS One; 2019; 14(3):e0213931. PubMed ID: 30870509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eggs of the copepod Acartia tonsa Dana require hypoxic conditions to tolerate prolonged embryonic development arrest.
    Jørgensen TS; Jepsen PM; Petersen HCB; Friis DS; Hansen BW
    BMC Ecol; 2019 Jan; 19(1):1. PubMed ID: 30646885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactive Effects of Increasing Temperature and Decreasing Oxygen on Coastal Copepods.
    Roman MR; Pierson JJ
    Biol Bull; 2022 Oct; 243(2):171-183. PubMed ID: 36548979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.