These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 24340548)

  • 21. Dynamic reduction with applications to mathematical biology and other areas.
    Sacker RJ; Von Bremen HF
    J Biol Dyn; 2007 Oct; 1(4):437-53. PubMed ID: 22876827
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Some implications of Scale Relativity theory in avascular stages of growth of solid tumors in the presence of an immune system response.
    Buzea CG; Agop M; Moraru E; Stana BA; Gîrţu M; Iancu D
    J Theor Biol; 2011 Aug; 282(1):52-64. PubMed ID: 21600219
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mathematical modelling, simulation and prediction of tumour-induced angiogenesis.
    Chaplain MA; Anderson AR
    Invasion Metastasis; 1996; 16(4-5):222-34. PubMed ID: 9311387
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A generalised age- and phase-structured model of human tumour cell populations both unperturbed and exposed to a range of cancer therapies.
    Basse B; Ubezio P
    Bull Math Biol; 2007 Jul; 69(5):1673-90. PubMed ID: 17361361
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computational modeling approaches to studying the dynamics of oncolytic viruses.
    Wodarz D
    Math Biosci Eng; 2013 Jun; 10(3):939-57. PubMed ID: 23906157
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level-set method.
    Zheng X; Wise SM; Cristini V
    Bull Math Biol; 2005 Mar; 67(2):211-59. PubMed ID: 15710180
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Mathematical modeling of life history evolution: a brief history and main trends].
    Budilova EV; Terekhin AT
    Zh Obshch Biol; 2010; 71(4):275-86. PubMed ID: 20865929
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The mathematical properties of the quasi-chemical model for microorganism growth-death kinetics in foods.
    Ross EW; Taub IA; Doona CJ; Feeherry FE; Kustin K
    Int J Food Microbiol; 2005 Mar; 99(2):157-71. PubMed ID: 15734564
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cancer immunotherapy, mathematical modeling and optimal control.
    Castiglione F; Piccoli B
    J Theor Biol; 2007 Aug; 247(4):723-32. PubMed ID: 17543345
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Finding identifiable parameter combinations in nonlinear ODE models and the rational reparameterization of their input-output equations.
    Meshkat N; Anderson C; Distefano JJ
    Math Biosci; 2011 Sep; 233(1):19-31. PubMed ID: 21763702
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mathematical modeling of capillary formation and development in tumor angiogenesis: penetration into the stroma.
    Levine HA; Pamuk S; Sleeman BD; Nilsen-Hamilton M
    Bull Math Biol; 2001 Sep; 63(5):801-63. PubMed ID: 11565406
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A LQ-based kinetic model formulation for exploring dynamics of treatment response of tumours in patients.
    Scheidegger S; Lutters G; Bodis S
    Z Med Phys; 2011 Sep; 21(3):164-73. PubMed ID: 21237624
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quiescence as an explanation of Gompertzian tumor growth.
    Gyllenberg M; Webb GF
    Growth Dev Aging; 1989; 53(1-2):25-33. PubMed ID: 2807642
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interactions between the immune system and cancer: a brief review of non-spatial mathematical models.
    Eftimie R; Bramson JL; Earn DJ
    Bull Math Biol; 2011 Jan; 73(1):2-32. PubMed ID: 20225137
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mass transport in micellar surfactant solutions: 1. Relaxation of micelle concentration, aggregation number and polydispersity.
    Danov KD; Kralchevsky PA; Denkov ND; Ananthapadmanabhan KP; Lips A
    Adv Colloid Interface Sci; 2006 Jan; 119(1):1-16. PubMed ID: 16303116
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reaction-diffusion approach to modeling of the spread of early tumors along linear or tubular structures.
    Marciniak-Czochra A; Kimmel M
    J Theor Biol; 2007 Feb; 244(3):375-87. PubMed ID: 17046022
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The migration of cells in multicell tumor spheroids.
    Pettet GJ; Please CP; Tindall MJ; McElwain DL
    Bull Math Biol; 2001 Mar; 63(2):231-57. PubMed ID: 11276525
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling analysis of the global and microscopic distribution of immunoglobulin G, F(ab')2, and Fab in tumors.
    Fujimori K; Covell DG; Fletcher JE; Weinstein JN
    Cancer Res; 1989 Oct; 49(20):5656-63. PubMed ID: 2790783
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A mathematical model for chronic myelogenous leukemia (CML) and T cell interaction.
    Moore H; Li NK
    J Theor Biol; 2004 Apr; 227(4):513-23. PubMed ID: 15038986
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of growth kinetics and proliferative heterogeneity of Lewis lung carcinoma cells growing as unfed culture.
    Pyaskovskaya ON; Kolesnik DL; Kolobov AV; Vovyanko SI; Solyanik GI
    Exp Oncol; 2008 Dec; 30(4):269-75. PubMed ID: 19112423
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.