These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 24340644)

  • 21. Correlation between steady-state plasma concentration of antituberculous drugs and age, inclusion of rifampicin in the treatment regimen, adverse drug reactions and other clinical parameters.
    Woo J; Chan C; Chan R; Cheung W; Or K; Chan K
    J Med; 1995; 26(5-6):279-94. PubMed ID: 8721904
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Experimental studies on intermittent use of rifampicin alone or combined with other secondary antituberculous drugs].
    Suzuki T
    Kekkaku; 1971 May; 46(5):153-64. PubMed ID: 4325363
    [No Abstract]   [Full Text] [Related]  

  • 23. A review of emerging trends in the treatment of tuberculosis.
    Kaur M; Garg T; Narang RK
    Artif Cells Nanomed Biotechnol; 2016; 44(2):478-84. PubMed ID: 25365354
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of antitubercular drug-loaded surfactants as inhalable drug-delivery systems for pulmonary tuberculosis.
    Chimote G; Banerjee R
    J Biomed Mater Res A; 2009 May; 89(2):281-92. PubMed ID: 18431766
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mycolic acids, a promising mycobacterial ligand for targeting of nanoencapsulated drugs in tuberculosis.
    Lemmer Y; Kalombo L; Pietersen RD; Jones AT; Semete-Makokotlela B; Van Wyngaardt S; Ramalapa B; Stoltz AC; Baker B; Verschoor JA; Swai HS; de Chastellier C
    J Control Release; 2015 Aug; 211():94-104. PubMed ID: 26055640
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanoemulsion-Based Transdermal Drug Delivery System for the Treatment of Tuberculosis.
    Wais M; Aqil M; Goswami P; Agnihotri J; Nadeem S
    Recent Pat Antiinfect Drug Discov; 2017; 12(2):107-119. PubMed ID: 28571549
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cellular uptake and transcytosis of lipid-based nanoparticles across the intestinal barrier: Relevance for oral drug delivery.
    Neves AR; Queiroz JF; Costa Lima SA; Figueiredo F; Fernandes R; Reis S
    J Colloid Interface Sci; 2016 Feb; 463():258-65. PubMed ID: 26550783
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Safety and toxicity concerns of orally delivered nanoparticles as drug carriers.
    Araújo F; Shrestha N; Granja PL; Hirvonen J; Santos HA; Sarmento B
    Expert Opin Drug Metab Toxicol; 2015 Mar; 11(3):381-93. PubMed ID: 25495133
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Tuberculosis therapy 1990].
    Villiger B
    Schweiz Rundsch Med Prax; 1990 May; 79(21):670-4. PubMed ID: 2190295
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Desensitization therapy for allergic reactions of antituberculous drugs--evaluation of desensitization therapy according to the guideline of the Japanese Society for Tuberculosis].
    Kobashi Y; Okimoto N; Matsushima T; Abe T; Nishimura K; Shishido S; Kawahara S; Shigeto E; Takeyama H; Kuraoka T
    Kekkaku; 2000 Dec; 75(12):699-704. PubMed ID: 11201137
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fighting tuberculosis: old drugs, new formulations.
    Blasi P; Schoubben A; Giovagnoli S; Rossi C; Ricci M
    Expert Opin Drug Deliv; 2009 Sep; 6(9):977-93. PubMed ID: 19678791
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Subcutaneous nanoparticle-based antitubercular chemotherapy in an experimental model.
    Pandey R; Khuller GK
    J Antimicrob Chemother; 2004 Jul; 54(1):266-8. PubMed ID: 15128731
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Antitubercular inhaled therapy: opportunities, progress and challenges.
    Pandey R; Khuller GK
    J Antimicrob Chemother; 2005 Apr; 55(4):430-5. PubMed ID: 15761077
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent approaches of lipid-based delivery system for lymphatic targeting via oral route.
    Chaudhary S; Garg T; Murthy RS; Rath G; Goyal AK
    J Drug Target; 2014 Dec; 22(10):871-82. PubMed ID: 25148607
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oral delivery of anticancer drugs III: formulation using drug delivery systems.
    Mazzaferro S; Bouchemal K; Ponchel G
    Drug Discov Today; 2013 Jan; 18(1-2):99-104. PubMed ID: 22981667
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pharmacokinetics of Inhaled Rifampicin Porous Particles for Tuberculosis Treatment: Insight into Rifampicin Absorption from the Lungs of Guinea Pigs.
    Garcia Contreras L; Sung J; Ibrahim M; Elbert K; Edwards D; Hickey A
    Mol Pharm; 2015 Aug; 12(8):2642-50. PubMed ID: 25942002
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhaled drug therapy for treatment of tuberculosis.
    Misra A; Hickey AJ; Rossi C; Borchard G; Terada H; Makino K; Fourie PB; Colombo P
    Tuberculosis (Edinb); 2011 Jan; 91(1):71-81. PubMed ID: 20875771
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inhalable alginate nanoparticles as antitubercular drug carriers against experimental tuberculosis.
    Ahmad Z; Sharma S; Khuller GK
    Int J Antimicrob Agents; 2005 Oct; 26(4):298-303. PubMed ID: 16154726
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Effectiveness of liposomal antibacterial drugs in the inhalation therapy of experimental tuberculosis].
    Kurunov IuN; Ursov IG; Krasnov VA; Petrenko TI; Iakovchenko NN; Svistelńik AV; Filimonov PA
    Probl Tuberk; 1995; (1):38-40. PubMed ID: 7761379
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Isoniazid-gelatin conjugate microparticles containing rifampicin for the treatment of tuberculosis.
    Manca ML; Cassano R; Valenti D; Trombino S; Ferrarelli T; Picci N; Fadda AM; Manconi M
    J Pharm Pharmacol; 2013 Sep; 65(9):1302-11. PubMed ID: 23927468
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.