BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 24341320)

  • 1. Pulsed addition of HMF and furfural to batch-grown xylose-utilizing Saccharomyces cerevisiae results in different physiological responses in glucose and xylose consumption phase.
    Ask M; Bettiga M; Duraiswamy VR; Olsson L
    Biotechnol Biofuels; 2013 Dec; 6(1):181. PubMed ID: 24341320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of HMF and furfural on redox-balance and energy-state of xylose-utilizing Saccharomyces cerevisiae.
    Ask M; Bettiga M; Mapelli V; Olsson L
    Biotechnol Biofuels; 2013 Feb; 6(1):22. PubMed ID: 23409974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction.
    Almeida JR; Bertilsson M; Hahn-Hägerdal B; Lidén G; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2009 Sep; 84(4):751-61. PubMed ID: 19506862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Furfural, 5-hydroxymethyl furfural, and acetoin act as external electron acceptors during anaerobic fermentation of xylose in recombinant Saccharomyces cerevisiae.
    Wahlbom CF; Hahn-Hägerdal B
    Biotechnol Bioeng; 2002 Apr; 78(2):172-8. PubMed ID: 11870608
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deletion of pgi gene in E. coli increases tolerance to furfural and 5-hydroxymethyl furfural in media containing glucose-xylose mixture.
    Jilani SB; Dev C; Eqbal D; Jawed K; Prasad R; Yazdani SS
    Microb Cell Fact; 2020 Jul; 19(1):153. PubMed ID: 32723338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway.
    Ishii J; Yoshimura K; Hasunuma T; Kondo A
    Appl Microbiol Biotechnol; 2013 Mar; 97(6):2597-607. PubMed ID: 23001007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae.
    Liu ZL; Moon J; Andersh BJ; Slininger PJ; Weber S
    Appl Microbiol Biotechnol; 2008 Dec; 81(4):743-53. PubMed ID: 18810428
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of a heat-stable NADPH-dependent alcohol dehydrogenase in Caldicellulosiruptor bescii results in furan aldehyde detoxification.
    Chung D; Verbeke TJ; Cross KL; Westpheling J; Elkins JG
    Biotechnol Biofuels; 2015; 8():102. PubMed ID: 26203301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. YNL134C from Saccharomyces cerevisiae encodes a novel protein with aldehyde reductase activity for detoxification of furfural derived from lignocellulosic biomass.
    Zhao X; Tang J; Wang X; Yang R; Zhang X; Gu Y; Li X; Ma M
    Yeast; 2015 May; 32(5):409-22. PubMed ID: 25656244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization.
    Krahulec S; Petschacher B; Wallner M; Longus K; Klimacek M; Nidetzky B
    Microb Cell Fact; 2010 Mar; 9():16. PubMed ID: 20219100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Establishment of
    Baptista M; Cunha JT; Domingues L
    J Fungi (Basel); 2021 Dec; 7(12):. PubMed ID: 34947029
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel endophytic yeast Rhodotorula mucilaginosa strain PTD3 II: production of xylitol and ethanol in the presence of inhibitors.
    Vajzovic A; Bura R; Kohlmeier K; Doty SL
    J Ind Microbiol Biotechnol; 2012 Oct; 39(10):1453-63. PubMed ID: 22711018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways.
    Liu ZL; Ma M; Song M
    Mol Genet Genomics; 2009 Sep; 282(3):233-44. PubMed ID: 19517136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae.
    Taherzadeh MJ; Gustafsson L; Niklasson C; Lidén G
    Appl Microbiol Biotechnol; 2000 Jun; 53(6):701-8. PubMed ID: 10919330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae.
    Hou J; Vemuri GN; Bao X; Olsson L
    Appl Microbiol Biotechnol; 2009 Apr; 82(5):909-19. PubMed ID: 19221731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran.
    Liu ZL; Slininger PJ; Dien BS; Berhow MA; Kurtzman CP; Gorsich SW
    J Ind Microbiol Biotechnol; 2004 Sep; 31(8):345-52. PubMed ID: 15338422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineered NADH-dependent GRE2 from Saccharomyces cerevisiae by directed enzyme evolution enhances HMF reduction using additional cofactor NADPH.
    Moon J; Liu ZL
    Enzyme Microb Technol; 2012 Feb; 50(2):115-20. PubMed ID: 22226197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of furan aldehydes conversion in
    Wang X; Gao Q; Bao J
    Biotechnol Biofuels; 2017; 10():24. PubMed ID: 28163781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of an acetate reduction pathway for producing cellulosic ethanol by engineered yeast.
    Zhang GC; Kong II; Wei N; Peng D; Turner TL; Sung BH; Sohn JH; Jin YS
    Biotechnol Bioeng; 2016 Dec; 113(12):2587-2596. PubMed ID: 27240865
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving furfural tolerance in a xylose-fermenting yeast Spathaspora passalidarum CMUWF1-2 via adaptive laboratory evolution.
    Saengphing T; Sattayawat P; Kalawil T; Suwannarach N; Kumla J; Yamada M; Panbangred W; Rodrussamee N
    Microb Cell Fact; 2024 Mar; 23(1):80. PubMed ID: 38481222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.