These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 24341544)

  • 1. Self-compliance-improved resistive switching using Ir/TaOx/W cross-point memory.
    Prakash A; Jana D; Samanta S; Maikap S
    Nanoscale Res Lett; 2013 Dec; 8(1):527. PubMed ID: 24341544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of electrically formed interfacial layer and improved memory characteristics of IrOx/high-κx/W structures containing AlOx, GdOx, HfOx, and TaOx switching materials.
    Prakash A; Maikap S; Banerjee W; Jana D; Lai CS
    Nanoscale Res Lett; 2013 Sep; 8(1):379. PubMed ID: 24011235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced resistive switching memory characteristics and mechanism using a Ti nanolayer at the W/TaOx interface.
    Prakash A; Maikap S; Chiu HC; Tien TC; Lai CS
    Nanoscale Res Lett; 2014 Mar; 9(1):125. PubMed ID: 24636463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced resistive switching phenomena using low-positive-voltage format and self-compliance IrOx/GdOx/W cross-point memories.
    Jana D; Maikap S; Prakash A; Chen YY; Chiu HC; Yang JR
    Nanoscale Res Lett; 2014 Jan; 9(1):12. PubMed ID: 24400888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-compliance RRAM characteristics using a novel W/TaO x /TiN structure.
    Maikap S; Jana D; Dutta M; Prakash A
    Nanoscale Res Lett; 2014; 9(1):292. PubMed ID: 24982604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Excellent resistive memory characteristics and switching mechanism using a Ti nanolayer at the Cu/TaOx interface.
    Rahaman SZ; Maikap S; Tien TC; Lee HY; Chen WS; Chen FT; Kao MJ; Tsai MJ
    Nanoscale Res Lett; 2012 Jun; 7(1):345. PubMed ID: 22734564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of the Atomic Layer-Deposited Ru Electrode Surface Morphology on Resistive Switching Properties of TaO
    Koroleva AA; Chernikova AG; Chouprik AA; Gornev ES; Slavich AS; Khakimov RR; Korostylev EV; Hwang CS; Markeev AM
    ACS Appl Mater Interfaces; 2020 Dec; 12(49):55331-55341. PubMed ID: 33190485
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forming-free and self-rectifying resistive switching of the simple Pt/TaOx/n-Si structure for access device-free high-density memory application.
    Gao S; Zeng F; Li F; Wang M; Mao H; Wang G; Song C; Pan F
    Nanoscale; 2015 Apr; 7(14):6031-8. PubMed ID: 25765948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced resistive switching memory characteristics and mechanism using a Ti nanolayer at the W/TaO x interface.
    Prakash A; Maikap S; Chiu HC; Tien TC; Lai CS
    Nanoscale Res Lett; 2014; 9(1):152. PubMed ID: 24791160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Copper pillar and memory characteristics using Al2O3 switching material for 3D architecture.
    Maikap S; Panja R; Jana D
    Nanoscale Res Lett; 2014; 9(1):366. PubMed ID: 25136279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly Uniform Resistive Switching Performances Using Two-Dimensional Electron Gas at a Thin-Film Heterostructure for Conductive Bridge Random Access Memory.
    Kim SM; Kim HJ; Jung HJ; Kim SH; Park JY; Seok TJ; Park TJ; Lee SW
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):30028-30036. PubMed ID: 31343152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electroforming-Free, Flexible, and Reliable Resistive Random-Access Memory Based on an Ultrathin TaO
    Chen Y; Yan Y; Wu J; Wang C; Lin JY; Zhao JS; Hwang CS
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):10681-10688. PubMed ID: 32043349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of device size and thickness of Al2O 3 film on the Cu pillar and resistive switching characteristics for 3D cross-point memory application.
    Panja R; Roy S; Jana D; Maikap S
    Nanoscale Res Lett; 2014 Dec; 9(1):2410. PubMed ID: 26088986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RRAM characteristics using a new Cr/GdOx/TiN structure.
    Jana D; Dutta M; Samanta S; Maikap S
    Nanoscale Res Lett; 2014 Dec; 9(1):2404. PubMed ID: 26088980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TaOx-based resistive switching memories: prospective and challenges.
    Prakash A; Jana D; Maikap S
    Nanoscale Res Lett; 2013 Oct; 8(1):418. PubMed ID: 24107610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stable and reliable IGZO resistive switching device with HfAlO
    Peng H; Liu H; Ma X; Cheng X
    Nanotechnology; 2023 Jun; 34(36):. PubMed ID: 37192603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Rectifying Resistive Switching and Short-Term Memory Characteristics in Pt/HfO
    Ryu H; Kim S
    Nanomaterials (Basel); 2020 Oct; 10(11):. PubMed ID: 33138118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved Uniformity of TaO
    Ju D; Kim S; Jang J; Kim S
    Materials (Basel); 2023 Sep; 16(18):. PubMed ID: 37763413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of Electrodeposited Bilayer Structures for Reliable Resistive Switching with Self-Compliance.
    Kim MK; Lee JS
    ACS Appl Mater Interfaces; 2016 Dec; 8(48):32918-32924. PubMed ID: 27934194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppression of Filament Overgrowth in Conductive Bridge Random Access Memory by Ta
    Yu J; Xu X; Gong T; Luo Q; Dong D; Yuan P; Tai L; Yin J; Zhu X; Wu X; Lv H; Liu M
    Nanoscale Res Lett; 2019 Mar; 14(1):111. PubMed ID: 30923974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.