These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 24341622)
1. Blood flow in hemodialysis catheters: a numerical simulation and microscopic analysis of in vivo-formed fibrin. Lucas TC; Tessarolo F; Jakitsch V; Caola I; Brunori G; Nollo G; Huebner R Artif Organs; 2014 Jul; 38(7):556-65. PubMed ID: 24341622 [TBL] [Abstract][Full Text] [Related]
2. Hemodialysis catheter thrombi: visualization and quantification of microstructures and cellular composition. Lucas TC; Tessarolo F; Veniero P; Caola I; Piccoli F; Haase A; Nollo G; Huebner R; Brunori G J Vasc Access; 2013; 14(3):257-63. PubMed ID: 23599143 [TBL] [Abstract][Full Text] [Related]
3. Quantification of fibrin in blood thrombi formed in hemodialysis central venous catheters: a pilot study on 43 CVCs. Lucas TC; Tessarolo F; Veniero P; D'Amato E; Caola I; Nollo G; Huebner R; Brunori G J Vasc Access; 2014; 15(4):278-85. PubMed ID: 24474517 [TBL] [Abstract][Full Text] [Related]
4. Comparison of symmetric hemodialysis catheters using computational fluid dynamics. Clark TW; Isu G; Gallo D; Verdonck P; Morbiducci U J Vasc Interv Radiol; 2015 Feb; 26(2):252-9.e2. PubMed ID: 25645414 [TBL] [Abstract][Full Text] [Related]
5. Particle image velocimetry-validated, computational fluid dynamics-based design to reduce shear stress and residence time in central venous hemodialysis catheters. Mareels G; Kaminsky R; Eloot S; Verdonck PR ASAIO J; 2007; 53(4):438-46. PubMed ID: 17667228 [TBL] [Abstract][Full Text] [Related]
6. Fibrin sheath formation and intimal thickening after catheter placement in dog model: role of hemodynamic wall shear stress. Wang LH; Wei F; Jia L; Lu Z; Wang B; Dong HY; Yu HB; Sun GJ; Yang J; Li B; Meng J; Zhang RN; Bi XQ; Chen HY; Jiang AL J Vasc Access; 2015; 16(4):275-84. PubMed ID: 25684581 [TBL] [Abstract][Full Text] [Related]
7. Computational fluid dynamics-analysis of the Niagara hemodialysis catheter in a right heart model. Mareels G; De Wachter DS; Verdonck PR Artif Organs; 2004 Jul; 28(7):639-48. PubMed ID: 15209857 [TBL] [Abstract][Full Text] [Related]
8. Impact of side-hole geometry on the performance of hemodialysis catheter tips: A computational fluid dynamics assessment. Owen DG; de Oliveira DC; Qian S; Green NC; Shepherd DET; Espino DM PLoS One; 2020; 15(8):e0236946. PubMed ID: 32764790 [TBL] [Abstract][Full Text] [Related]
9. Computational fluid dynamics characterization of pulsatile flow in central and Sano shunts connected to the pulmonary arteries: importance of graft angulation on shear stress-induced, platelet-mediated thrombosis. Ascuitto R; Ross-Ascuitto N; Guillot M; Celestin C Interact Cardiovasc Thorac Surg; 2017 Sep; 25(3):414-421. PubMed ID: 28525548 [TBL] [Abstract][Full Text] [Related]
10. The natural history of tunneled hemodialysis catheters removed or exchanged: a single-institution experience. Alomari AI; Falk A J Vasc Interv Radiol; 2007 Feb; 18(2):227-35. PubMed ID: 17327555 [TBL] [Abstract][Full Text] [Related]
11. Occlusive thrombus formation on indwelling catheters: in vitro investigation and computational analysis. Friedrich P; Reininger AJ Thromb Haemost; 1995 Jan; 73(1):66-72. PubMed ID: 7740499 [TBL] [Abstract][Full Text] [Related]
12. Influence of Hemodialysis Catheter Insertion on Hemodynamics in the Central Veins. Park MH; Qiu Y; Cao H; Yuan D; Li D; Jiang Y; Peng L; Zheng T J Biomech Eng; 2020 Sep; 142(9):. PubMed ID: 32110795 [TBL] [Abstract][Full Text] [Related]
13. In vitro quantification of time dependent thrombus size using magnetic resonance imaging and computational simulations of thrombus surface shear stresses. Taylor JO; Witmer KP; Neuberger T; Craven BA; Meyer RS; Deutsch S; Manning KB J Biomech Eng; 2014 Jul; 136(7):. PubMed ID: 24805351 [TBL] [Abstract][Full Text] [Related]
14. Computational model of the fluid dynamics of a cannula inserted in a vessel: incidence of the presence of side holes in blood flow. Grigioni M; Daniele C; Morbiducci U; D'Avenio G; Di Benedetto G; Del Gaudio C; Barbaro V J Biomech; 2002 Dec; 35(12):1599-612. PubMed ID: 12445613 [TBL] [Abstract][Full Text] [Related]
15. Influence of microvascular sutures on shear strain rate in realistic pulsatile flow. Wain RAJ; Smith DJ; Hammond DR; Whitty JPM Microvasc Res; 2018 Jul; 118():69-81. PubMed ID: 29522755 [TBL] [Abstract][Full Text] [Related]
16. Numerical and experimental flow analysis of the Wang-Zwische double-lumen cannula. De Bartolo C; Nigro A; Fragomeni G; Colacino FM; Wang D; Jones CC; Zwischenberger J ASAIO J; 2011; 57(4):318-27. PubMed ID: 21654494 [TBL] [Abstract][Full Text] [Related]
17. The hemodynamics of thrombus formation in arteries. Ouriel K; Donayre C; Shortell CK; Cimino C; Donnelly J; Oxley D; Green RM J Vasc Surg; 1991 Dec; 14(6):757-62; discussion 762-3. PubMed ID: 1960805 [TBL] [Abstract][Full Text] [Related]
18. Analysis of flow within a left ventricle model fully assisted with continuous flow through the aortic valve. Yano T; Funayama M; Sudo S; Mitamura Y Artif Organs; 2012 Aug; 36(8):714-23. PubMed ID: 22882441 [TBL] [Abstract][Full Text] [Related]
19. Reduced effect of aspirin on thrombus formation at high shear and disturbed laminar blood flow. Barstad RM; Orvim U; Hamers MJ; Tjønnfjord GE; Brosstad FR; Sakariassen KS Thromb Haemost; 1996 May; 75(5):827-32. PubMed ID: 8725731 [TBL] [Abstract][Full Text] [Related]
20. Embolic complications from central venous hemodialysis catheters used with hypertonic citrate locking solution. Willicombe MK; Vernon K; Davenport A Am J Kidney Dis; 2010 Feb; 55(2):348-51. PubMed ID: 19800723 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]