These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 24341670)

  • 1. Impact of heterogeneity on oxygen transfer in a fluctuating capillary fringe.
    Haberer CM; Rolle M; Cirpka OA; Grathwohl P
    Ground Water; 2015; 53(1):57-70. PubMed ID: 24341670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental sensitivity analysis of oxygen transfer in the capillary fringe.
    Haberer CM; Cirpka OA; Rolle M; Grathwohl P
    Ground Water; 2014; 52(1):37-49. PubMed ID: 23406417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high-resolution non-invasive approach to quantify oxygen transport across the capillary fringe and within the underlying groundwater.
    Haberer CM; Rolle M; Liu S; Cirpka OA; Grathwohl P
    J Contam Hydrol; 2011 Mar; 122(1-4):26-39. PubMed ID: 21131093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental investigation of compound-specific dilution of solute plumes in saturated porous media: 2-D vs. 3-D flow-through systems.
    Ye Y; Chiogna G; Cirpka O; Grathwohl P; Rolle M
    J Contam Hydrol; 2015 Jan; 172():33-47. PubMed ID: 25462641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of surface-active solutes on water flow and contaminant transport in variably saturated porous media with capillary fringe effects.
    Henry EJ; Smith JE
    J Contam Hydrol; 2002 Jun; 56(3-4):247-70. PubMed ID: 12102321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical study of variable-density flow and transport in unsaturated-saturated porous media.
    Liu Y; Kuang X; Jiao JJ; Li J
    J Contam Hydrol; 2015 Nov; 182():117-30. PubMed ID: 26379086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradation of phenol, salicylic acid, benzenesulfonic acid, and iomeprol by Pseudomonas fluorescens in the capillary fringe.
    Hack N; Reinwand C; Abbt-Braun G; Horn H; Frimmel FH
    J Contam Hydrol; 2015 Dec; 183():40-54. PubMed ID: 26529301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of unsaturated flow and solute transport through waste rock at two experimental scales using temporal moments and numerical modeling.
    Blackmore S; Smith L; Ulrich Mayer K; Beckie RD
    J Contam Hydrol; 2014 Dec; 171():49-65. PubMed ID: 25461887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of soil moisture dynamics on dense nonaqueous phase liquid (DNAPL) spill zone architecture in heterogeneous porous media.
    Yoon H; Valocchi AJ; Werth CJ
    J Contam Hydrol; 2007 Mar; 90(3-4):159-83. PubMed ID: 17184872
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Air and water entrapment in the vicinity of the water table.
    Dunn AM; Silliman SE
    Ground Water; 2003; 41(6):729-34. PubMed ID: 14649856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluid flow and solute migration within the capillary fringe.
    Silliman SE; Berkowitz B; Simunek J; van Genuchten MT
    Ground Water; 2002; 40(1):76-84. PubMed ID: 11803946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variably saturated flow and multicomponent biogeochemical reactive transport modeling of a uranium bioremediation field experiment.
    Yabusaki SB; Fang Y; Williams KH; Murray CJ; Ward AL; Dayvault RD; Waichler SR; Newcomer DR; Spane FA; Long PE
    J Contam Hydrol; 2011 Nov; 126(3-4):271-90. PubMed ID: 22115092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the importance of diffusion and compound-specific mixing for groundwater transport: an investigation from pore to field scale.
    Rolle M; Chiogna G; Hochstetler DL; Kitanidis PK
    J Contam Hydrol; 2013 Oct; 153():51-68. PubMed ID: 23994908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redistribution of contaminants by a fluctuating water table in a micro-porous, double-porosity aquifer: field observations and model simulations.
    Fretwell BA; Burgess WG; Barker JA; Jefferies NL
    J Contam Hydrol; 2005 Jun; 78(1-2):27-52. PubMed ID: 15949606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies of water velocity in the capillary fringe: the point velocity probe.
    Berg SJ; Gillham RW
    Ground Water; 2010; 48(1):59-67. PubMed ID: 19664049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of dilution and transverse reactive mixing in porous media: experiments and model-based interpretation.
    Rolle M; Eberhardt C; Chiogna G; Cirpka OA; Grathwohl P
    J Contam Hydrol; 2009 Nov; 110(3-4):130-42. PubMed ID: 19896237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On evaluating characteristics of the solute transport in the arid vadose zone.
    Yu Z; Dong W; Young MH; Li Y; Yang T
    Ground Water; 2014; 52(1):50-62. PubMed ID: 23406385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fringe-controlled biodegradation under dynamic conditions: quasi 2-D flow-through experiments and reactive-transport modeling.
    Eckert D; Kürzinger P; Bauer R; Griebler C; Cirpka OA
    J Contam Hydrol; 2015 Jan; 172():100-11. PubMed ID: 25496820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the validity of travel-time based nonlinear bioreactive transport models in steady-state flow.
    Sanz-Prat A; Lu C; Finkel M; Cirpka OA
    J Contam Hydrol; 2015; 175-176():26-43. PubMed ID: 25723340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of dense plume fingers in saturated-unsaturated homogeneous porous media.
    Cremer CJ; Graf T
    J Contam Hydrol; 2015 Feb; 173():69-82. PubMed ID: 25555221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.