These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
474 related articles for article (PubMed ID: 24341705)
1. Diffusion-controlled synthesis of PbS and PbSe quantum dots with in situ halide passivation for quantum dot solar cells. Zhang J; Gao J; Miller EM; Luther JM; Beard MC ACS Nano; 2014 Jan; 8(1):614-22. PubMed ID: 24341705 [TBL] [Abstract][Full Text] [Related]
2. Air-Stable and Efficient PbSe Quantum-Dot Solar Cells Based upon ZnSe to PbSe Cation-Exchanged Quantum Dots. Kim S; Marshall AR; Kroupa DM; Miller EM; Luther JM; Jeong S; Beard MC ACS Nano; 2015 Aug; 9(8):8157-64. PubMed ID: 26222812 [TBL] [Abstract][Full Text] [Related]
3. PbSe quantum dot solar cells with more than 6% efficiency fabricated in ambient atmosphere. Zhang J; Gao J; Church CP; Miller EM; Luther JM; Klimov VI; Beard MC Nano Lett; 2014 Oct; 14(10):6010-5. PubMed ID: 25203870 [TBL] [Abstract][Full Text] [Related]
4. A New Passivation Route Leading to Over 8% Efficient PbSe Quantum-Dot Solar Cells via Direct Ion Exchange with Perovskite Nanocrystals. Zhang Z; Chen Z; Yuan L; Chen W; Yang J; Wang B; Wen X; Zhang J; Hu L; Stride JA; Conibeer GJ; Patterson RJ; Huang S Adv Mater; 2017 Nov; 29(41):. PubMed ID: 28922475 [TBL] [Abstract][Full Text] [Related]
5. Efficiently Passivated PbSe Quantum Dot Solids for Infrared Photovoltaics. Liu S; Xiong K; Wang K; Liang G; Li MY; Tang H; Yang X; Huang Z; Lian L; Tan M; Wang K; Gao L; Song H; Zhang D; Gao J; Lan X; Tang J; Zhang J ACS Nano; 2021 Feb; 15(2):3376-3386. PubMed ID: 33512158 [TBL] [Abstract][Full Text] [Related]
6. Synthetic Conditions for High-Accuracy Size Control of PbS Quantum Dots. Zhang J; Crisp RW; Gao J; Kroupa DM; Beard MC; Luther JM J Phys Chem Lett; 2015 May; 6(10):1830-3. PubMed ID: 26263256 [TBL] [Abstract][Full Text] [Related]
7. Low-Cost, Air-Processed Quantum Dot Solar Cells via Diffusion-Controlled Synthesis. Durmusoglu EG; Selopal GS; Mohammadnezhad M; Zhang H; Dagtepe P; Barba D; Sun S; Zhao H; Acar HY; Wang ZM; Rosei F ACS Appl Mater Interfaces; 2020 Aug; 12(32):36301-36310. PubMed ID: 32666797 [TBL] [Abstract][Full Text] [Related]
8. Passivation of PbS Quantum Dot Surface with l-Glutathione in Solid-State Quantum-Dot-Sensitized Solar Cells. Jumabekov AN; Cordes N; Siegler TD; Docampo P; Ivanova A; Fominykh K; Medina DD; Peter LM; Bein T ACS Appl Mater Interfaces; 2016 Feb; 8(7):4600-7. PubMed ID: 26771519 [TBL] [Abstract][Full Text] [Related]
9. High performance of PbSe/PbS core/shell quantum dot heterojunction solar cells: short circuit current enhancement without the loss of open circuit voltage by shell thickness control. Choi H; Song JH; Jang J; Mai XD; Kim S; Jeong S Nanoscale; 2015 Nov; 7(41):17473-81. PubMed ID: 26440646 [TBL] [Abstract][Full Text] [Related]
10. Low-temperature approach to high-yield and reproducible syntheses of high-quality small-sized PbSe colloidal nanocrystals for photovoltaic applications. Ouyang J; Schuurmans C; Zhang Y; Nagelkerke R; Wu X; Kingston D; Wang ZY; Wilkinson D; Li C; Leek DM; Tao Y; Yu K ACS Appl Mater Interfaces; 2011 Feb; 3(2):553-65. PubMed ID: 21244024 [TBL] [Abstract][Full Text] [Related]
11. Solution-Phase Hybrid Passivation for Efficient Infrared-Band Gap Quantum Dot Solar Cells. Mahajan C; Sharma A; Rath AK ACS Appl Mater Interfaces; 2020 Nov; 12(44):49840-49848. PubMed ID: 33081466 [TBL] [Abstract][Full Text] [Related]
12. Facile synthesis of ultra-small PbSe nanorods for photovoltaic application. Han L; Liu J; Yu N; Liu Z; Gu J; Lu J; Ma W Nanoscale; 2015 Feb; 7(6):2461-70. PubMed ID: 25564767 [TBL] [Abstract][Full Text] [Related]
13. Pushing the band gap envelope: mid-infrared emitting colloidal PbSe quantum dots. Pietryga JM; Schaller RD; Werder D; Stewart MH; Klimov VI; Hollingsworth JA J Am Chem Soc; 2004 Sep; 126(38):11752-3. PubMed ID: 15382884 [TBL] [Abstract][Full Text] [Related]
14. Preventing interfacial recombination in colloidal quantum dot solar cells by doping the metal oxide. Ehrler B; Musselman KP; Böhm ML; Morgenstern FS; Vaynzof Y; Walker BJ; Macmanus-Driscoll JL; Greenham NC ACS Nano; 2013 May; 7(5):4210-20. PubMed ID: 23531107 [TBL] [Abstract][Full Text] [Related]
15. Steric-hindrance-driven shape transition in PbS quantum dots: understanding size-dependent stability. Choi H; Ko JH; Kim YH; Jeong S J Am Chem Soc; 2013 Apr; 135(14):5278-81. PubMed ID: 23496143 [TBL] [Abstract][Full Text] [Related]
16. In Situ Passivation for Efficient PbS Quantum Dot Solar Cells by Precursor Engineering. Wang Y; Lu K; Han L; Liu Z; Shi G; Fang H; Chen S; Wu T; Yang F; Gu M; Zhou S; Ling X; Tang X; Zheng J; Loi MA; Ma W Adv Mater; 2018 Apr; 30(16):e1704871. PubMed ID: 29543986 [TBL] [Abstract][Full Text] [Related]
17. Towards high efficiency air-processed near-infrared responsive photovoltaics: bulk heterojunction solar cells based on PbS/CdS core-shell quantum dots and TiO2 nanorod arrays. Gonfa BA; Kim MR; Delegan N; Tavares AC; Izquierdo R; Wu N; El Khakani MA; Ma D Nanoscale; 2015 Jun; 7(22):10039-49. PubMed ID: 25975363 [TBL] [Abstract][Full Text] [Related]
18. Sensitized solar cells with colloidal PbS-CdS core-shell quantum dots. Lai LH; Protesescu L; Kovalenko MV; Loi MA Phys Chem Chem Phys; 2014 Jan; 16(2):736-42. PubMed ID: 24270835 [TBL] [Abstract][Full Text] [Related]
19. Quantum confinement-tunable ultrafast charge transfer at the PbS quantum dot and phenyl-C₆₁-butyric acid methyl ester interface. El-Ballouli AO; Alarousu E; Bernardi M; Aly SM; Lagrow AP; Bakr OM; Mohammed OF J Am Chem Soc; 2014 May; 136(19):6952-9. PubMed ID: 24521255 [TBL] [Abstract][Full Text] [Related]
20. Epitaxial Heterostructures of Lead Selenide Quantum Dots on Hematite Nanowires. Selinsky RS; Shin S; Lukowski MA; Jin S J Phys Chem Lett; 2012 Jun; 3(12):1649-56. PubMed ID: 26285723 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]