These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 24341817)

  • 1. Nanomicellar carriers for targeted delivery of anticancer agents.
    Zhang X; Huang Y; Li S
    Ther Deliv; 2014 Jan; 5(1):53-68. PubMed ID: 24341817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymeric micelles: nanocarriers for cancer-targeted drug delivery.
    Zhang Y; Huang Y; Li S
    AAPS PharmSciTech; 2014 Aug; 15(4):862-71. PubMed ID: 24700296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multifunctional nanomicellar systems for delivering anticancer drugs.
    Chen YC; Lo CL; Hsiue GH
    J Biomed Mater Res A; 2014 Jun; 102(6):2024-38. PubMed ID: 23828850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeted delivery of curcumin to tumors via PEG-derivatized FTS-based micellar system.
    Chen Y; Zhang X; Lu J; Huang Y; Li J; Li S
    AAPS J; 2014 May; 16(3):600-8. PubMed ID: 24706375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymeric nano-micelles: versatile platform for targeted delivery in cancer.
    Mohamed S; Parayath NN; Taurin S; Greish K
    Ther Deliv; 2014 Oct; 5(10):1101-21. PubMed ID: 25418269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Current trends in the use of vitamin E-based micellar nanocarriers for anticancer drug delivery.
    Muddineti OS; Ghosh B; Biswas S
    Expert Opin Drug Deliv; 2017 Jun; 14(6):715-726. PubMed ID: 27560621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted Drug Delivery System for Platinum-based Anticancer Drugs.
    Gao C; Zhang Y; Chen J; Wang T; Qian Y; Yang B; Dong P; Zhang Y
    Mini Rev Med Chem; 2016; 16(11):872-91. PubMed ID: 26586124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Advances in polymer-drug conjugated micelles in the delivery of anticancer drugs].
    Yin XL; Zhang B; Liu YJ; Zhang N
    Yao Xue Xue Bao; 2016 May; 51(5):710-6. PubMed ID: 29874007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in polymeric micelles for drug delivery and tumor targeting.
    Kedar U; Phutane P; Shidhaye S; Kadam V
    Nanomedicine; 2010 Dec; 6(6):714-29. PubMed ID: 20542144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A potential non-invasive glioblastoma treatment: Nose-to-brain delivery of farnesylthiosalicylic acid incorporated hybrid nanoparticles.
    Sekerdag E; Lüle S; Bozdağ Pehlivan S; Öztürk N; Kara A; Kaffashi A; Vural I; Işıkay I; Yavuz B; Oguz KK; Söylemezoğlu F; Gürsoy-Özdemir Y; Mut M
    J Control Release; 2017 Sep; 261():187-198. PubMed ID: 28684169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the pharmacokinetics and toxicology of polymeric micelle conjugated therapeutics.
    Thotakura N; Parashar P; Raza K
    Expert Opin Drug Metab Toxicol; 2021 Mar; 17(3):323-332. PubMed ID: 33292023
    [No Abstract]   [Full Text] [Related]  

  • 12. Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs.
    Lukyanov AN; Torchilin VP
    Adv Drug Deliv Rev; 2004 May; 56(9):1273-89. PubMed ID: 15109769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Composite fiber structures with antiproliferative agents exhibit advantageous drug delivery and cell growth inhibition in vitro.
    Kraitzer A; Kloog Y; Haklai R; Zilberman M
    J Pharm Sci; 2011 Jan; 100(1):133-49. PubMed ID: 20623695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polymeric nanoparticles as carrier for targeted and controlled delivery of anticancer agents.
    Taghipour-Sabzevar V; Sharifi T; Moghaddam MM
    Ther Deliv; 2019 Aug; 10(8):527-550. PubMed ID: 31496433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classification of stimuli-responsive polymers as anticancer drug delivery systems.
    Taghizadeh B; Taranejoo S; Monemian SA; Salehi Moghaddam Z; Daliri K; Derakhshankhah H; Derakhshani Z
    Drug Deliv; 2015 Feb; 22(2):145-55. PubMed ID: 24547737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanocarriers for anticancer drugs--new trends in nanomedicine.
    Drbohlavova J; Chomoucka J; Adam V; Ryvolova M; Eckschlager T; Hubalek J; Kizek R
    Curr Drug Metab; 2013 Jun; 14(5):547-64. PubMed ID: 23687925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physicochemical, pharmaceutical and biological approaches toward designing optimized and efficient hydrophobically modified chitosan-based polymeric micelles as a nanocarrier system for targeted delivery of anticancer drugs.
    Mahmoudzadeh M; Fassihi A; Emami J; Davies NM; Dorkoosh F
    J Drug Target; 2013 Sep; 21(8):693-709. PubMed ID: 23915108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thinking Outside the 'Block': Alternative Polymer Compositions for Micellar Drug Delivery.
    Jones MC
    Curr Top Med Chem; 2015; 15(22):2254-66. PubMed ID: 26043738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Polymer nanoparticles for the delivery of anticancer drug].
    Nicolas J; Couvreur P
    Med Sci (Paris); 2017 Jan; 33(1):11-17. PubMed ID: 28120750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.
    Pérez-Herrero E; Fernández-Medarde A
    Eur J Pharm Biopharm; 2015 Jun; 93():52-79. PubMed ID: 25813885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.