These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 24341855)

  • 1. Design and characterization of an injectable tendon hydrogel: a novel scaffold for guided tissue regeneration in the musculoskeletal system.
    Farnebo S; Woon CY; Schmitt T; Joubert LM; Kim M; Pham H; Chang J
    Tissue Eng Part A; 2014 May; 20(9-10):1550-61. PubMed ID: 24341855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A naturally derived, cytocompatible, and architecturally optimized scaffold for tendon and ligament regeneration.
    Whitlock PW; Smith TL; Poehling GG; Shilt JS; Van Dyke M
    Biomaterials; 2007 Oct; 28(29):4321-9. PubMed ID: 17610948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimized Repopulation of Tendon Hydrogel: Synergistic Effects of Growth Factor Combinations and Adipose-Derived Stem Cells.
    Farnebo S; Farnebo L; Kim M; Woon C; Pham H; Chang J
    Hand (N Y); 2017 Jan; 12(1):68-77. PubMed ID: 28082847
    [No Abstract]   [Full Text] [Related]  

  • 4. Injectable and Thermosensitive Soluble Extracellular Matrix and Methylcellulose Hydrogels for Stem Cell Delivery in Skin Wounds.
    Kim EJ; Choi JS; Kim JS; Choi YC; Cho YW
    Biomacromolecules; 2016 Jan; 17(1):4-11. PubMed ID: 26607961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogel derived from porcine decellularized nerve tissue as a promising biomaterial for repairing peripheral nerve defects.
    Lin T; Liu S; Chen S; Qiu S; Rao Z; Liu J; Zhu S; Yan L; Mao H; Zhu Q; Quan D; Liu X
    Acta Biomater; 2018 Jun; 73():326-338. PubMed ID: 29649641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of mechanical stimulation on the maturation of TDSCs-poly(L-lactide-co-e-caprolactone)/collagen scaffold constructs for tendon tissue engineering.
    Xu Y; Dong S; Zhou Q; Mo X; Song L; Hou T; Wu J; Li S; Li Y; Li P; Gan Y; Xu J
    Biomaterials; 2014 Mar; 35(9):2760-72. PubMed ID: 24411676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone Regeneration Using Hydroxyapatite Sponge Scaffolds with In Vivo Deposited Extracellular Matrix.
    Ventura RD; Padalhin AR; Min YK; Lee BT
    Tissue Eng Part A; 2015 Nov; 21(21-22):2649-61. PubMed ID: 26228909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and characterization of a decellularized bovine tendon sheet for tendon reconstruction.
    Ning LJ; Jiang YL; Zhang CH; Zhang Y; Yang JL; Cui J; Zhang YJ; Yao X; Luo JC; Qin TW
    J Biomed Mater Res A; 2017 Aug; 105(8):2299-2311. PubMed ID: 28380688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Vitro Characteristics of Porcine Tendon Hydrogel for Tendon Regeneration.
    Crowe CS; Chiou G; McGoldrick R; Hui K; Pham H; Hollenbeck E; Chang J
    Ann Plast Surg; 2016 Jan; 77(1):47-53. PubMed ID: 25305229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimization of an injectable tendon hydrogel: the effects of platelet-rich plasma and adipose-derived stem cells on tendon healing in vivo.
    Chiou GJ; Crowe C; McGoldrick R; Hui K; Pham H; Chang J
    Tissue Eng Part A; 2015 May; 21(9-10):1579-86. PubMed ID: 25625433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermosensitive chitosan-Pluronic hydrogel as an injectable cell delivery carrier for cartilage regeneration.
    Park KM; Lee SY; Joung YK; Na JS; Lee MC; Park KD
    Acta Biomater; 2009 Jul; 5(6):1956-65. PubMed ID: 19261553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of Microunits by Adipose-Derived Mesenchymal Stem Cells Laden with Porous Microcryogels for Repairing an Acute Achilles Tendon Rupture in a Rat Model.
    Yang X; Meng H; Peng J; Xu L; Wang Y; Sun X; Zhao Y; Quan Q; Yu W; Chen M; Shi T; Du Y; Lu S; Wang A
    Int J Nanomedicine; 2020; 15():7155-7171. PubMed ID: 33061373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Agar-based bridges as biocompatible candidates to provide guide cues in spinal cord injury repair.
    Martín-López E; Darder M; Ruiz-Hitzky E; Nieto Sampedro M
    Biomed Mater Eng; 2013; 23(5):405-21. PubMed ID: 23988711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concentration-dependent rheological properties of ECM hydrogel for intracerebral delivery to a stroke cavity.
    Massensini AR; Ghuman H; Saldin LT; Medberry CJ; Keane TJ; Nicholls FJ; Velankar SS; Badylak SF; Modo M
    Acta Biomater; 2015 Nov; 27():116-130. PubMed ID: 26318805
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of porous PEG hydrogels that enable efficient, uniform cell-seeding and permit early neural process extension.
    Namba RM; Cole AA; Bjugstad KB; Mahoney MJ
    Acta Biomater; 2009 Jul; 5(6):1884-97. PubMed ID: 19250891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Award winner for outstanding research in the PhD category, 2014 Society for Biomaterials annual meeting and exposition, Denver, Colorado, April 16-19, 2014: Decellularized adipose matrix hydrogels stimulate in vivo neovascularization and adipose formation.
    Adam Young D; Bajaj V; Christman KL
    J Biomed Mater Res A; 2014 Jun; 102(6):1641-51. PubMed ID: 24510423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biohybrid cardiac ECM-based hydrogels improve long term cardiac function post myocardial infarction.
    Efraim Y; Sarig H; Cohen Anavy N; Sarig U; de Berardinis E; Chaw SY; Krishnamoorthi M; Kalifa J; Bogireddi H; Duc TV; Kofidis T; Baruch L; Boey FYC; Venkatraman SS; Machluf M
    Acta Biomater; 2017 Mar; 50():220-233. PubMed ID: 27956366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perivascular extracellular matrix hydrogels mimic native matrix microarchitecture and promote angiogenesis via basic fibroblast growth factor.
    Fercana GR; Yerneni S; Billaud M; Hill JC; VanRyzin P; Richards TD; Sicari BM; Johnson SA; Badylak SF; Campbell PG; Gleason TG; Phillippi JA
    Biomaterials; 2017 Apr; 123():142-154. PubMed ID: 28167392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional hypoxic culture of human mesenchymal stem cells encapsulated in a photocurable, biodegradable polymer hydrogel: a potential injectable cellular product for nucleus pulposus regeneration.
    Kumar D; Gerges I; Tamplenizza M; Lenardi C; Forsyth NR; Liu Y
    Acta Biomater; 2014 Aug; 10(8):3463-74. PubMed ID: 24793656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regenerative potential of decellularized porcine nucleus pulposus hydrogel scaffolds: stem cell differentiation, matrix remodeling, and biocompatibility studies.
    Mercuri JJ; Patnaik S; Dion G; Gill SS; Liao J; Simionescu DT
    Tissue Eng Part A; 2013 Apr; 19(7-8):952-66. PubMed ID: 23140227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.