These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 24341896)

  • 1. Chemical factors that control lignin polymerization.
    Sangha AK; Davison BH; Standaert RF; Davis MF; Smith JC; Parks JM
    J Phys Chem B; 2014 Jan; 118(1):164-70. PubMed ID: 24341896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of beta-O-4-type artificial lignin polymers and their analysis by NMR spectroscopy.
    Kishimoto T; Uraki Y; Ubukata M
    Org Biomol Chem; 2008 Aug; 6(16):2982-7. PubMed ID: 18688492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of wheat straw lignin structure by comprehensive NMR analysis.
    Zeng J; Helms GL; Gao X; Chen S
    J Agric Food Chem; 2013 Nov; 61(46):10848-57. PubMed ID: 24143908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lignin engineering.
    Vanholme R; Morreel K; Ralph J; Boerjan W
    Curr Opin Plant Biol; 2008 Jun; 11(3):278-85. PubMed ID: 18434238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radical coupling reactions in lignin synthesis: a density functional theory study.
    Sangha AK; Parks JM; Standaert RF; Ziebell A; Davis M; Smith JC
    J Phys Chem B; 2012 Apr; 116(16):4760-8. PubMed ID: 22475051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Easy synthesis of beta-O-4 type lignin related polymers.
    Kishimoto T; Uraki Y; Ubukata M
    Org Biomol Chem; 2005 Mar; 3(6):1067-73. PubMed ID: 15750650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of syringyl to guaiacyl ratio on the structure of natural and synthetic lignins.
    Kishimoto T; Chiba W; Saito K; Fukushima K; Uraki Y; Ubukata M
    J Agric Food Chem; 2010 Jan; 58(2):895-901. PubMed ID: 20041658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Styrene-spaced copolymers including anthraquinone and β-O-4 lignin model units: synthesis, characterization and reactivity under alkaline pulping conditions.
    Megiatto JD; Cazeils E; Ham-Pichavant F; Grelier S; Gardrat C; Castellan A
    Biomacromolecules; 2012 May; 13(5):1652-62. PubMed ID: 22530612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic-assisted polymerization of the lignin obtained from a macroalgae consortium, using an extracellular laccase-like enzyme (Tg-laccase) from
    Antúnez-Argüelles E; Herrera-Bulnes M; Torres-Ariño A; Mirón-Enríquez C; Soriano-García M; Robles-Gómez E
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020; 55(6):739-747. PubMed ID: 32181694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural characterization of lignin from leaf sheaths of "dwarf cavendish" banana plant.
    Oliveira L; Evtuguin DV; Cordeiro N; Silvestre AJ; Silva AM; Torres IC
    J Agric Food Chem; 2006 Apr; 54(7):2598-605. PubMed ID: 16569050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive compositional analysis of plant cell walls (Lignocellulosic biomass) part I: lignin.
    Foster CE; Martin TM; Pauly M
    J Vis Exp; 2010 Mar; (37):. PubMed ID: 20224547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical synthesis of beta-O-4 type artificial lignin.
    Kishimoto T; Uraki Y; Ubukata M
    Org Biomol Chem; 2006 Apr; 4(7):1343-7. PubMed ID: 16557323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plant cell walls are enfeebled when attempting to preserve native lignin configuration with poly-p-hydroxycinnamaldehydes: evolutionary implications.
    Jourdes M; Cardenas CL; Laskar DD; Moinuddin SG; Davin LB; Lewis NG
    Phytochemistry; 2007 Jul; 68(14):1932-56. PubMed ID: 17559892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling lignin polymerization. I. Simulation model of dehydrogenation polymers.
    van Parijs FR; Morreel K; Ralph J; Boerjan W; Merks RM
    Plant Physiol; 2010 Jul; 153(3):1332-44. PubMed ID: 20472753
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methyltrioxorhenium: a new catalyst for the activation of hydrogen peroxide to the oxidation of lignin and lignin model compounds.
    Crestini C; Pro P; Neri V; Saladino R
    Bioorg Med Chem; 2005 Apr; 13(7):2569-78. PubMed ID: 15755658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kraft lignin chain extension chemistry via propargylation, oxidative coupling, and Claisen rearrangement.
    Sen S; Sadeghifar H; Argyropoulos DS
    Biomacromolecules; 2013 Oct; 14(10):3399-408. PubMed ID: 23962343
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural characterization of lignin from triploid of Populus tomentosa Carr.
    Yuan TQ; Sun SN; Xu F; Sun RC
    J Agric Food Chem; 2011 Jun; 59(12):6605-15. PubMed ID: 21568341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical and Raman spectroscopic studies of phenolic lignin model monomers.
    Larsen KL; Barsberg S
    J Phys Chem B; 2010 Jun; 114(23):8009-21. PubMed ID: 20499919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation of functionalized phenolic monomers through selective oxidation and C-O bond cleavage of the β-O-4 linkages in lignin.
    Lancefield CS; Ojo OS; Tran F; Westwood NJ
    Angew Chem Int Ed Engl; 2015 Jan; 54(1):258-62. PubMed ID: 25377996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lignin-Biosynthetic Study: Reactivity of Quinone Methides in the Diastereopreferential Formation of p-Hydroxyphenyl- and Guaiacyl-Type β- O-4 Structures.
    Zhu X; Akiyama T; Yokoyama T; Matsumoto Y
    J Agric Food Chem; 2019 Feb; 67(8):2139-2147. PubMed ID: 30668903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.