BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

842 related articles for article (PubMed ID: 24342085)

  • 1. Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: implications for remediation of groundwater contaminated by antibiotics.
    Ji Y; Ferronato C; Salvador A; Yang X; Chovelon JM
    Sci Total Environ; 2014 Feb; 472():800-8. PubMed ID: 24342085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous ion.
    Liang C; Bruell CJ; Marley MC; Sperry KL
    Chemosphere; 2004 Jun; 55(9):1225-33. PubMed ID: 15081763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ferrous-activated persulfate oxidation of arsenic(III) and diuron in aquatic system.
    Zhou L; Zheng W; Ji Y; Zhang J; Zeng C; Zhang Y; Wang Q; Yang X
    J Hazard Mater; 2013 Dec; 263 Pt 2():422-30. PubMed ID: 24220194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermo activated persulfate oxidation of antibiotic sulfamethoxazole and structurally related compounds.
    Ji Y; Fan Y; Liu K; Kong D; Lu J
    Water Res; 2015 Dec; 87():1-9. PubMed ID: 26378726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sulfate radical-based oxidation of fluoroquinolone antibiotics: Kinetics, mechanisms and effects of natural water matrices.
    Jiang C; Ji Y; Shi Y; Chen J; Cai T
    Water Res; 2016 Dec; 106():507-517. PubMed ID: 27770727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ferrous-activated peroxymonosulfate oxidation of antimicrobial agent sulfaquinoxaline and structurally related compounds in aqueous solution: kinetics, products, and transformation pathways.
    Ji Y; Wang L; Jiang M; Yang Y; Yang P; Lu J; Ferronato C; Chovelon JM
    Environ Sci Pollut Res Int; 2017 Aug; 24(24):19535-19545. PubMed ID: 28681293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfamethoxazole degradation by an Fe(ii)-activated persulfate process: insight into the reactive sites, product identification and degradation pathways.
    Luo T; Wan J; Ma Y; Wang Y; Wan Y
    Environ Sci Process Impacts; 2019 Sep; 21(9):1560-1569. PubMed ID: 31364657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple.
    Liang C; Bruell CJ; Marley MC; Sperry KL
    Chemosphere; 2004 Jun; 55(9):1213-23. PubMed ID: 15081762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sulfate radical-based oxidation of the antibiotics sulfamethoxazole, sulfisoxazole, sulfathiazole, and sulfamethizole: The role of five-membered heterocyclic rings.
    Zhou L; Yang X; Ji Y; Wei J
    Sci Total Environ; 2019 Nov; 692():201-208. PubMed ID: 31344571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of sulfamethoxazole and ciprofloxacin from aqueous solutions by graphene oxide.
    Chen H; Gao B; Li H
    J Hazard Mater; 2015 Jan; 282():201-7. PubMed ID: 24755346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation of carbamazepine by Fe(II)-activated persulfate process.
    Rao YF; Qu L; Yang H; Chu W
    J Hazard Mater; 2014 Mar; 268():23-32. PubMed ID: 24462988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative degradation of propachlor by ferrous and copper ion activated persulfate.
    Liu CS; Shih K; Sun CX; Wang F
    Sci Total Environ; 2012 Feb; 416():507-12. PubMed ID: 22226398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Release of chromium from soils with persulfate chemical oxidation.
    Kaur K; Crimi M
    Ground Water; 2014; 52(5):748-55. PubMed ID: 24028318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. pH dependence of persulfate activation by EDTA/Fe(III) for degradation of trichloroethylene.
    Liang C; Liang CP; Chen CC
    J Contam Hydrol; 2009 May; 106(3-4):173-82. PubMed ID: 19286273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced effect of HAH on citric acid-chelated Fe(II)-catalyzed percarbonate for trichloroethene degradation.
    Fu X; Brusseau ML; Zang X; Lu S; Zhang X; Farooq U; Qiu Z; Sui Q
    Environ Sci Pollut Res Int; 2017 Nov; 24(31):24318-24326. PubMed ID: 28889360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Persistence of the antibiotic sulfamethoxazole in river water alone or in the co-presence of ciprofloxacin.
    Patrolecco L; Rauseo J; Ademollo N; Grenni P; Cardoni M; Levantesi C; Luprano ML; Caracciolo AB
    Sci Total Environ; 2018 Nov; 640-641():1438-1446. PubMed ID: 30021310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of activation methods on persulfate oxidation of methyl tert-butyl ether.
    Deng D; Peng L; Guan M; Kang Y
    J Hazard Mater; 2014 Jan; 264():521-8. PubMed ID: 24246442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical abatement of the antibiotic sulfamethoxazole from water.
    Dirany A; Sirés I; Oturan N; Oturan MA
    Chemosphere; 2010 Oct; 81(5):594-602. PubMed ID: 20833409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic and mechanistic investigations of the degradation of sulfamethazine in heat-activated persulfate oxidation process.
    Fan Y; Ji Y; Kong D; Lu J; Zhou Q
    J Hazard Mater; 2015 Dec; 300():39-47. PubMed ID: 26151383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ oxidation of petroleum-hydrocarbon contaminated groundwater using passive ISCO system.
    Liang SH; Kao CM; Kuo YC; Chen KF; Yang BM
    Water Res; 2011 Apr; 45(8):2496-506. PubMed ID: 21396673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 43.