BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

431 related articles for article (PubMed ID: 24342086)

  • 1. Occurrence, behavior and distribution of high levels of uranium in shallow groundwater at Datong basin, northern China.
    Wu Y; Wang Y; Xie X
    Sci Total Environ; 2014 Feb; 472():809-17. PubMed ID: 24342086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China.
    Xie X; Ellis A; Wang Y; Xie Z; Duan M; Su C
    Sci Total Environ; 2009 Jun; 407(12):3823-35. PubMed ID: 19344934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Behavior and fate of geogenic uranium in a shallow groundwater system.
    Wu Y; Wang Y; Guo W
    J Contam Hydrol; 2019 Apr; 222():41-55. PubMed ID: 30827739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variations of uranium concentrations in a multi-aquifer system under the impact of surface water-groundwater interaction.
    Wu Y; Li J; Wang Y; Xie X
    J Contam Hydrol; 2018 Apr; 211():65-76. PubMed ID: 29559163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mobilization of arsenic and other naturally occurring contaminants in groundwater of the Main Ethiopian Rift aquifers.
    Rango T; Vengosh A; Dwyer G; Bianchini G
    Water Res; 2013 Oct; 47(15):5801-18. PubMed ID: 23899878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution and hydrogeochemical behavior of arsenic enriched groundwater in the sedimentary aquifer comparison between Datong Basin (China) and Kushtia District (Bangladesh).
    Huq ME; Su C; Fahad S; Li J; Sarven MS; Liu R
    Environ Sci Pollut Res Int; 2018 Jun; 25(16):15830-15843. PubMed ID: 29582329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogeochemistry of high iodine groundwater: a case study at the Datong Basin, northern China.
    Li J; Wang Y; Xie X; Zhang L; Guo W
    Environ Sci Process Impacts; 2013 Apr; 15(4):848-59. PubMed ID: 23478640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Persistence of uranium groundwater plumes: contrasting mechanisms at two DOE sites in the groundwater-river interaction zone.
    Zachara JM; Long PE; Bargar J; Davis JA; Fox P; Fredrickson JK; Freshley MD; Konopka AE; Liu C; McKinley JP; Rockhold ML; Williams KH; Yabusaki SB
    J Contam Hydrol; 2013 Apr; 147():45-72. PubMed ID: 23500840
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geochemical evolution of groundwater salinity at basin scale: a case study from Datong basin, Northern China.
    Wu Y; Wang Y
    Environ Sci Process Impacts; 2014 May; 16(6):1469-79. PubMed ID: 24737419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissolved radon and uranium in groundwater in a potential coal seam gas development region (Richmond River Catchment, Australia).
    Atkins ML; Santos IR; Perkins A; Maher DT
    J Environ Radioact; 2016 Apr; 154():83-92. PubMed ID: 26867097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uranium levels in Cypriot groundwater samples determined by ICP-MS and α-spectroscopy.
    Charalambous C; Aletrari M; Piera P; Nicolaidou-Kanari P; Efstathiou M; Pashalidis I
    J Environ Radioact; 2013 Feb; 116():187-92. PubMed ID: 23195433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Implications of organic matter on arsenic mobilization into groundwater: evidence from northwestern (Chapai-Nawabganj), central (Manikganj) and southeastern (Chandpur) Bangladesh.
    Reza AH; Jean JS; Lee MK; Liu CC; Bundschuh J; Yang HJ; Lee JF; Lee YC
    Water Res; 2010 Nov; 44(19):5556-74. PubMed ID: 20875661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sources and controls for the mobility of arsenic in oxidizing groundwaters from loess-type sediments in arid/semi-arid dry climates - evidence from the Chaco-Pampean plain (Argentina).
    Nicolli HB; Bundschuh J; García JW; Falcón CM; Jean JS
    Water Res; 2010 Nov; 44(19):5589-604. PubMed ID: 21035830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study on the role of hydrogeology on the distribution of uranium in alluvial aquifers of northwest India.
    Sharma DA; Keesari T; Rishi MS; Pant D
    Environ Monit Assess; 2018 Nov; 190(12):746. PubMed ID: 30474744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An isotope hydrochemical approach to understand fluoride release into groundwaters of the Datong Basin, Northern China.
    Su C; Wang Y; Xie X; Zhu Y
    Environ Sci Process Impacts; 2015 Apr; 17(4):791-801. PubMed ID: 25743227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Groundwater uranium origin and fate control in a river valley aquifer.
    Banning A; Demmel T; Rüde TR; Wrobel M
    Environ Sci Technol; 2013 Dec; 47(24):13941-8. PubMed ID: 24112070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uranium release from sediment to groundwater: influence of water chemistry and insights into release mechanisms.
    Alam MS; Cheng T
    J Contam Hydrol; 2014 Aug; 164():72-87. PubMed ID: 24954631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogeochemistry of high-fluoride groundwater at Yuncheng Basin, northern China.
    Li C; Gao X; Wang Y
    Sci Total Environ; 2015 Mar; 508():155-65. PubMed ID: 25478652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent measurements of 234U/238U isotope ratio in spring waters from the Hadzici area.
    Vidic A; Ilić Z; Benedik L
    J Environ Radioact; 2013 Jun; 120():6-13. PubMed ID: 23410592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contrasting distributions of groundwater arsenic and uranium in the western Hetao basin, Inner Mongolia: Implication for origins and fate controls.
    Guo H; Jia Y; Wanty RB; Jiang Y; Zhao W; Xiu W; Shen J; Li Y; Cao Y; Wu Y; Zhang D; Wei C; Zhang Y; Cao W; Foster A
    Sci Total Environ; 2016 Jan; 541():1172-1190. PubMed ID: 26473717
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.