These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

411 related articles for article (PubMed ID: 24342234)

  • 21. Role of airway surface liquid and submucosal glands in cystic fibrosis lung disease.
    Verkman AS; Song Y; Thiagarajah JR
    Am J Physiol Cell Physiol; 2003 Jan; 284(1):C2-15. PubMed ID: 12475759
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Altered terminal glycosylation and the pathophysiology of CF lung disease.
    Rhim AD; Stoykova LI; Trindade AJ; Glick MC; Scanlin TF
    J Cyst Fibros; 2004 Aug; 3 Suppl 2():95-6. PubMed ID: 15463936
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CFTR: cystic fibrosis and beyond.
    Mall MA; Hartl D
    Eur Respir J; 2014 Oct; 44(4):1042-54. PubMed ID: 24925916
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oxidative stress modulates the expression of genes involved in cell survival in ΔF508 cystic fibrosis airway epithelial cells.
    Voisin G; Bouvet GF; Legendre P; Dagenais A; Massé C; Berthiaume Y
    Physiol Genomics; 2014 Sep; 46(17):634-46. PubMed ID: 24893876
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Activation of P2RY11 and ATP release by lipoxin A4 restores the airway surface liquid layer and epithelial repair in cystic fibrosis.
    Higgins G; Buchanan P; Perriere M; Al-Alawi M; Costello RW; Verriere V; McNally P; Harvey BJ; Urbach V
    Am J Respir Cell Mol Biol; 2014 Aug; 51(2):178-90. PubMed ID: 24588705
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Relation between gene mutations and pancreatic exocrine function in patients with cystic fibrosis].
    Radivojević D; Guć-Sćekić M; Djurisić M; Lalić T; Minić P; Kanavakis E
    Srp Arh Celok Lek; 2001; 129 Suppl 1():6-9. PubMed ID: 15637983
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of the amiloride-sensitive epithelial Na+ channel in the pathogenesis and as a therapeutic target for cystic fibrosis lung disease.
    Mall MA
    Exp Physiol; 2009 Feb; 94(2):171-4. PubMed ID: 19060118
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cationic lipid:pDNA complexes for the treatment of cystic fibrosis.
    Eastman SJ; Scheule RK
    Curr Opin Mol Ther; 1999 Apr; 1(2):186-96. PubMed ID: 11715942
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of cystic fibrosis transmembrane conductance regulator by microRNA-145, -223, and -494 is altered in ΔF508 cystic fibrosis airway epithelium.
    Oglesby IK; Chotirmall SH; McElvaney NG; Greene CM
    J Immunol; 2013 Apr; 190(7):3354-62. PubMed ID: 23436935
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functions of the cystic fibrosis transmembrane conductance regulator protein.
    Frizzell RA
    Am J Respir Crit Care Med; 1995 Mar; 151(3 Pt 2):S54-8. PubMed ID: 7533606
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Immunopathophysiologic mechanisms of cystic fibrosis lung disease.
    Soferman R
    Isr Med Assoc J; 2006 Jan; 8(1):44-8. PubMed ID: 16450752
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chloride transporting capability of Calu-3 epithelia following persistent knockdown of the cystic fibrosis transmembrane conductance regulator, CFTR.
    MacVinish LJ; Cope G; Ropenga A; Cuthbert AW
    Br J Pharmacol; 2007 Apr; 150(8):1055-65. PubMed ID: 17339840
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Turnover of the cystic fibrosis transmembrane conductance regulator (CFTR): slow degradation of wild-type and delta F508 CFTR in surface membrane preparations of immortalized airway epithelial cells.
    Wei X; Eisman R; Xu J; Harsch AD; Mulberg AE; Bevins CL; Glick MC; Scanlin TF
    J Cell Physiol; 1996 Aug; 168(2):373-84. PubMed ID: 8707873
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Expression of the cystic fibrosis gene in the lungs].
    Heijerman HG; de Jonge HR
    Ned Tijdschr Geneeskd; 2004 Apr; 148(17):816-9. PubMed ID: 15141646
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Correction of the ion transport defect in cystic fibrosis transgenic mice by gene therapy.
    Hyde SC; Gill DR; Higgins CF; Trezise AE; MacVinish LJ; Cuthbert AW; Ratcliff R; Evans MJ; Colledge WH
    Nature; 1993 Mar; 362(6417):250-5. PubMed ID: 7681548
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Understanding how cystic fibrosis mutations disrupt CFTR function: from single molecules to animal models.
    Wang Y; Wrennall JA; Cai Z; Li H; Sheppard DN
    Int J Biochem Cell Biol; 2014 Jul; 52():47-57. PubMed ID: 24727426
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Airway surface liquid homeostasis in cystic fibrosis: pathophysiology and therapeutic targets.
    Haq IJ; Gray MA; Garnett JP; Ward C; Brodlie M
    Thorax; 2016 Mar; 71(3):284-7. PubMed ID: 26719229
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cystic fibrosis and the use of pharmacogenomics to determine surrogate endpoints for drug discovery.
    Eidelman O; Zhang J; Srivastava M; Pollard HB
    Am J Pharmacogenomics; 2001; 1(3):223-38. PubMed ID: 12083969
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Developmental paradigm for early features of cystic fibrosis.
    Larson JE; Cohen JC
    Pediatr Pulmonol; 2005 Nov; 40(5):371-7. PubMed ID: 15830387
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cystic Fibrosis: Pathophysiology of Lung Disease.
    Bergeron C; Cantin AM
    Semin Respir Crit Care Med; 2019 Dec; 40(6):715-726. PubMed ID: 31659725
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.