BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 24342719)

  • 1. Oxidative stress in melanocyte senescence and melanoma transformation.
    Meierjohann S
    Eur J Cell Biol; 2014; 93(1-2):36-41. PubMed ID: 24342719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular pathogenesis of cutaneous melanocytic neoplasms.
    Ibrahim N; Haluska FG
    Annu Rev Pathol; 2009; 4():551-79. PubMed ID: 19400696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactive oxygen species: an Achilles' heel of melanoma?
    Fruehauf JP; Trapp V
    Expert Rev Anticancer Ther; 2008 Nov; 8(11):1751-7. PubMed ID: 18983235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MITF pathway mutations in melanoma.
    Yokoyama S; Salma N; Fisher DE
    Pigment Cell Melanoma Res; 2009 Aug; 22(4):376-7. PubMed ID: 19558635
    [No Abstract]   [Full Text] [Related]  

  • 5. Cystathionase mediates senescence evasion in melanocytes and melanoma cells.
    Leikam C; Hufnagel A; Walz S; Kneitz S; Fekete A; Müller MJ; Eilers M; Schartl M; Meierjohann S
    Oncogene; 2014 Feb; 33(6):771-82. PubMed ID: 23353821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The AP-1 transcription factor FOSL1 causes melanocyte reprogramming and transformation.
    Maurus K; Hufnagel A; Geiger F; Graf S; Berking C; Heinemann A; Paschen A; Kneitz S; Stigloher C; Geissinger E; Otto C; Bosserhoff A; Schartl M; Meierjohann S
    Oncogene; 2017 Sep; 36(36):5110-5121. PubMed ID: 28481878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. KLF9-dependent ROS regulate melanoma progression in stage-specific manner.
    Bagati A; Moparthy S; Fink EE; Bianchi-Smiraglia A; Yun DH; Kolesnikova M; Udartseva OO; Wolff DW; Roll MV; Lipchick BC; Han Z; Kozlova NI; Jowdy P; Berman AE; Box NF; Rodriguez C; Bshara W; Kandel ES; Soengas MS; Paragh G; Nikiforov MA
    Oncogene; 2019 May; 38(19):3585-3597. PubMed ID: 30664687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The roles of microphthalmia-associated transcription factor and pigmentation in melanoma.
    Hsiao JJ; Fisher DE
    Arch Biochem Biophys; 2014 Dec; 563():28-34. PubMed ID: 25111671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. IGFBP7 is not required for B-RAF-induced melanocyte senescence.
    Scurr LL; Pupo GM; Becker TM; Lai K; Schrama D; Haferkamp S; Irvine M; Scolyer RA; Mann GJ; Becker JC; Kefford RF; Rizos H
    Cell; 2010 May; 141(4):717-27. PubMed ID: 20478260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactive oxygen species and melanoma: an explanation for gender differences in survival?
    Joosse A; De Vries E; van Eijck CH; Eggermont AM; Nijsten T; Coebergh JW
    Pigment Cell Melanoma Res; 2010 Jun; 23(3):352-64. PubMed ID: 20218981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Malignant transformation in melanocytes is associated with increased production of procoagulant microvesicles.
    Lima LG; Oliveira AS; Campos LC; Bonamino M; Chammas R; Werneck C; Vicente CP; Barcinski MA; Petersen LC; Monteiro RQ
    Thromb Haemost; 2011 Oct; 106(4):712-23. PubMed ID: 21800005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutamatergic signaling in cellular transformation.
    Teh JL; Chen S
    Pigment Cell Melanoma Res; 2012 May; 25(3):331-42. PubMed ID: 22273393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oncogene activation in melanocytes links reactive oxygen to multinucleated phenotype and senescence.
    Leikam C; Hufnagel A; Schartl M; Meierjohann S
    Oncogene; 2008 Nov; 27(56):7070-82. PubMed ID: 18806824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactive oxygen species in melanoma and its therapeutic implications.
    Wittgen HG; van Kempen LC
    Melanoma Res; 2007 Dec; 17(6):400-9. PubMed ID: 17992124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Melanoma-associated melanocortin 1 receptor variants confer redox signaling-dependent protection against oxidative DNA damage.
    Castejón-Griñán M; Cerdido S; Sánchez-Beltrán J; Lambertos A; Abrisqueta M; Herraiz C; Jiménez-Cervantes C; García-Borrón JC
    Redox Biol; 2024 Jun; 72():103135. PubMed ID: 38565069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Melanoma transition is frequently accompanied by a loss of cytoglobin expression in melanocytes: a novel expression site of cytoglobin.
    Fujita Y; Koinuma S; De Velasco MA; Bolz J; Togashi Y; Terashima M; Hayashi H; Matsuo T; Nishio K
    PLoS One; 2014; 9(4):e94772. PubMed ID: 24722418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Different expression patterns of p27 and p57 proteins in benign and malignant melanocytic neoplasms and in cultured human melanocytes.
    Curry JL; Richards HW; Huttenbach YT; Medrano EE; Reed JA
    J Cutan Pathol; 2009 Feb; 36(2):197-205. PubMed ID: 18647205
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Malignant melanoma and the role of the paradoxal protein Microphthalmia transcription factor].
    Denat L; Larue L
    Bull Cancer; 2007 Jan; 94(1):81-92. PubMed ID: 17237008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constitutive RAC activation is not sufficient to initiate melanocyte neoplasia but accelerates malignant progression.
    Dalton LE; Kamarashev J; Barinaga-Rementeria Ramirez I; White G; Malliri A; Hurlstone A
    J Invest Dermatol; 2013 Jun; 133(6):1572-81. PubMed ID: 23337888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular biology of normal melanocytes and melanoma cells.
    Bandarchi B; Jabbari CA; Vedadi A; Navab R
    J Clin Pathol; 2013 Aug; 66(8):644-8. PubMed ID: 23526597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.