These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 24343026)

  • 41. How RNA-Binding Proteins Interact with RNA: Molecules and Mechanisms.
    Corley M; Burns MC; Yeo GW
    Mol Cell; 2020 Apr; 78(1):9-29. PubMed ID: 32243832
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dihedral angle preferences of DNA and RNA binding amino acid residues in proteins.
    Ponnuraj K; Saravanan KM
    Int J Biol Macromol; 2017 Apr; 97():434-439. PubMed ID: 28099891
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Modeling Protein-Protein or Protein-DNA/RNA Complexes Using the HDOCK Webserver.
    Yan Y; Huang SY
    Methods Mol Biol; 2020; 2165():217-229. PubMed ID: 32621227
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Specificity and determinants of Sam68 RNA binding. Implications for the biological function of K homology domains.
    Lin Q; Taylor SJ; Shalloway D
    J Biol Chem; 1997 Oct; 272(43):27274-80. PubMed ID: 9341174
    [TBL] [Abstract][Full Text] [Related]  

  • 45. DBBP: database of binding pairs in protein-nucleic acid interactions.
    Park B; Kim H; Han K
    BMC Bioinformatics; 2014; 15 Suppl 15(Suppl 15):S5. PubMed ID: 25474259
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sequence-Based Prediction of RNA-Binding Residues in Proteins.
    Walia RR; El-Manzalawy Y; Honavar VG; Dobbs D
    Methods Mol Biol; 2017; 1484():205-235. PubMed ID: 27787829
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Prediction of RNA binding sites in proteins from amino acid sequence.
    Terribilini M; Lee JH; Yan C; Jernigan RL; Honavar V; Dobbs D
    RNA; 2006 Aug; 12(8):1450-62. PubMed ID: 16790841
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Probing binding hot spots at protein-RNA recognition sites.
    Barik A; Nithin C; Karampudi NB; Mukherjee S; Bahadur RP
    Nucleic Acids Res; 2016 Jan; 44(2):e9. PubMed ID: 26365245
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Protein-DNA interactions: structural, thermodynamic and clustering patterns of conserved residues in DNA-binding proteins.
    Ahmad S; Keskin O; Sarai A; Nussinov R
    Nucleic Acids Res; 2008 Oct; 36(18):5922-32. PubMed ID: 18801847
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structure based approach for understanding organism specific recognition of protein-RNA complexes.
    Nagarajan R; Chothani SP; Ramakrishnan C; Sekijima M; Gromiha MM
    Biol Direct; 2015 Mar; 10():8. PubMed ID: 25886642
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Joint evolutionary trees: a large-scale method to predict protein interfaces based on sequence sampling.
    Engelen S; Trojan LA; Sacquin-Mora S; Lavery R; Carbone A
    PLoS Comput Biol; 2009 Jan; 5(1):e1000267. PubMed ID: 19165315
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Themes in RNA-protein recognition.
    Draper DE
    J Mol Biol; 1999 Oct; 293(2):255-70. PubMed ID: 10550207
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Predicting protein-binding RNA nucleotides using the feature-based removal of data redundancy and the interaction propensity of nucleotide triplets.
    Choi S; Han K
    Comput Biol Med; 2013 Nov; 43(11):1687-97. PubMed ID: 24209914
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structure-based prediction of RNA-binding domains and RNA-binding sites and application to structural genomics targets.
    Zhao H; Yang Y; Zhou Y
    Nucleic Acids Res; 2011 Apr; 39(8):3017-25. PubMed ID: 21183467
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Identification of RNA-binding sites in proteins by integrating various sequence information.
    Wang CC; Fang Y; Xiao J; Li M
    Amino Acids; 2011 Jan; 40(1):239-48. PubMed ID: 20549269
    [TBL] [Abstract][Full Text] [Related]  

  • 56. RNA Sequence Context Effects Measured In Vitro Predict In Vivo Protein Binding and Regulation.
    Taliaferro JM; Lambert NJ; Sudmant PH; Dominguez D; Merkin JJ; Alexis MS; Bazile C; Burge CB
    Mol Cell; 2016 Oct; 64(2):294-306. PubMed ID: 27720642
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Novel structural and functional mode of a knot essential for RNA binding activity of the Esa1 presumed chromodomain.
    Shimojo H; Sano N; Moriwaki Y; Okuda M; Horikoshi M; Nishimura Y
    J Mol Biol; 2008 May; 378(5):987-1001. PubMed ID: 18407291
    [TBL] [Abstract][Full Text] [Related]  

  • 58. RNABindRPlus: a predictor that combines machine learning and sequence homology-based methods to improve the reliability of predicted RNA-binding residues in proteins.
    Walia RR; Xue LC; Wilkins K; El-Manzalawy Y; Dobbs D; Honavar V
    PLoS One; 2014; 9(5):e97725. PubMed ID: 24846307
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Structural modeling identified the tRNA-binding domain of Utp8p, an essential nucleolar component of the nuclear tRNA export machinery of Saccharomyces cerevisiae.
    McGuire AT; Keates RA; Cook S; Mangroo D
    Biochem Cell Biol; 2009 Apr; 87(2):431-43. PubMed ID: 19370060
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Optimal protein-RNA area, OPRA: a propensity-based method to identify RNA-binding sites on proteins.
    Pérez-Cano L; Fernández-Recio J
    Proteins; 2010 Jan; 78(1):25-35. PubMed ID: 19714772
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.