BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

449 related articles for article (PubMed ID: 24343126)

  • 1. Exploring non-covalent interactions in guanine- and xanthine-based model DNA quadruplex structures: a comprehensive quantum chemical approach.
    Yurenko YP; Novotný J; Sklenář V; Marek R
    Phys Chem Chem Phys; 2014 Feb; 16(5):2072-84. PubMed ID: 24343126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designing a New Class of Bases for Nucleic Acid Quadruplexes and Quadruplex-Active Ligands.
    Bazzi S; Novotný J; Yurenko YP; Marek R
    Chemistry; 2015 Jun; 21(26):9414-25. PubMed ID: 26032561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intermolecular CH···O/N H-bonds in the biologically important pairs of natural nucleobases: a thorough quantum-chemical study.
    Brovarets' OO; Yurenko YP; Hovorun DM
    J Biomol Struct Dyn; 2014; 32(6):993-1022. PubMed ID: 23730732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleic Acid Quadruplexes Based on 8-Halo-9-deazaxanthines: Energetics and Noncovalent Interactions in Quadruplex Stems.
    Yurenko YP; Novotný J; Mitoraj MP; Sklenář V; Michalak A; Marek R
    J Chem Theory Comput; 2014 Dec; 10(12):5353-65. PubMed ID: 26583219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the monovalent ion position and hydrogen-bond network in guanine quartets by DFT calculations of NMR parameters.
    van Mourik T; Dingley AJ
    Chemistry; 2005 Oct; 11(20):6064-79. PubMed ID: 16052652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Telomere structure and stability: covalency in hydrogen bonds, not resonance assistance, causes cooperativity in guanine quartets.
    Fonseca Guerra C; Zijlstra H; Paragi G; Bickelhaupt FM
    Chemistry; 2011 Nov; 17(45):12612-22. PubMed ID: 21997949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tailoring the properties of quadruplex nucleobases for biological and nanomaterial applications.
    Novotný J; Yurenko YP; Kulhánek P; Marek R
    Phys Chem Chem Phys; 2014 Aug; 16(29):15241-8. PubMed ID: 24939211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Weak Supramolecular Interactions Governing Parallel and Antiparallel DNA Quadruplexes: Insights from Large-Scale Quantum Mechanics Analysis of Experimentally Derived Models.
    Yurenko YP; Novotný J; Marek R
    Chemistry; 2017 Apr; 23(23):5573-5584. PubMed ID: 28225208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Xanthine and 8-oxoguanine in G-quadruplexes: formation of a G·G·X·O tetrad.
    Cheong VV; Heddi B; Lech CJ; Phan AT
    Nucleic Acids Res; 2015 Dec; 43(21):10506-14. PubMed ID: 26400177
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Is the DPT tautomerization of the long A·G Watson-Crick DNA base mispair a source of the adenine and guanine mutagenic tautomers? A QM and QTAIM response to the biologically important question.
    Brovarets' OO; Zhurakivsky RO; Hovorun DM
    J Comput Chem; 2014 Mar; 35(6):451-66. PubMed ID: 24382756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploiting hydrogen bonding interactions to probe smaller linear and cyclic diamines binding to G-quadruplexes: a DFT and molecular dynamics study.
    Kanti Si M; Sen A; Ganguly B
    Phys Chem Chem Phys; 2017 May; 19(18):11474-11484. PubMed ID: 28425525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. True stabilization energies for the optimal planar hydrogen-bonded and stacked structures of guanine...cytosine, adenine...thymine, and their 9- and 1-methyl derivatives: complete basis set calculations at the MP2 and CCSD(T) levels and comparison with experiment.
    Jurecka P; Hobza P
    J Am Chem Soc; 2003 Dec; 125(50):15608-13. PubMed ID: 14664608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inverting the G-Tetrad Polarity of a G-Quadruplex by Using Xanthine and 8-Oxoguanine.
    Cheong VV; Lech CJ; Heddi B; Phan AT
    Angew Chem Int Ed Engl; 2016 Jan; 55(1):160-3. PubMed ID: 26563582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The significant role of the intermolecular CH⋯O/N hydrogen bonds in governing the biologically important pairs of the DNA and RNA modified bases: a comprehensive theoretical investigation.
    Brovarets' OO; Yurenko YP; Hovorun DM
    J Biomol Struct Dyn; 2015; 33(8):1624-52. PubMed ID: 25350312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modified Guanines as Constituents of Smart Ligands for Nucleic Acid Quadruplexes.
    Durec M; Zaccaria F; Fonseca Guerra C; Marek R
    Chemistry; 2016 Jul; 22(31):10912-22. PubMed ID: 27385491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A combined QM and MM investigation into guanine quadruplexes.
    Clay EH; Gould IR
    J Mol Graph Model; 2005 Oct; 24(2):138-46. PubMed ID: 16168688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of external electric field on H-bonding and π-stacking interactions in guanine aggregates.
    Jissy AK; Datta A
    Chemphyschem; 2012 Dec; 13(18):4163-72. PubMed ID: 23065813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Guanine base stacking in G-quadruplex nucleic acids.
    Lech CJ; Heddi B; Phan AT
    Nucleic Acids Res; 2013 Feb; 41(3):2034-46. PubMed ID: 23268444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MP2, density functional theory, and molecular mechanical calculations of C-H...pi and hydrogen bond interactions in a cellulose-binding module-cellulose model system.
    Mohamed MN; Watts HD; Guo J; Catchmark JM; Kubicki JD
    Carbohydr Res; 2010 Aug; 345(12):1741-51. PubMed ID: 20580346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cooperativity in the Self-Assembly of the Guanine Nucleobase into Quartet and Ribbon Structures on Surfaces.
    Paragi G; Fonseca Guerra C
    Chemistry; 2017 Mar; 23(13):3042-3050. PubMed ID: 27897350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.